JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

Recent Releases

All Releases

New Bio-Adhesive Polymer Demonstrated in JoVE

October 24, 2012

A new video-article in JoVE, Journal of Visualized Experiments, details the use of a new laser-activated bio-adhesive polymer. The chitosan-based polymer, SurgiLux, was developed by scientists at the University of New South Wales. Chitosan is a polymer derived from chitin, which is found in fungal cell walls or in exoskeletons of crustaceans and insects.This molecular component allows SurgiLux to form low energy bonds between the polymer and the desired tissue when it absorbs light. The technology may soon replace traditional sutures in the clinic.

For thousands of years, clinicians have been using sutures to close open wounds and help repair torn tissues. Dr. L. John Foster from the University of New South Wales explains that, "though sutures have a superior strength to SurgiLux, sutures are physically invasive and do not support tissue regeneration. SurgiLux is a thin film, so you do not end up with any physical invasion or further damage to the tissue, thus allowing more complete healing." This is beneficial when repairing delicate tissues like neurons or blood vessels.

The SurgiLux polymer has two valuable properties: it can achieve a uniform seal when activated by a laser, and has antimicrobial properties attributable to the chitosan base. Together, these features prevent the wound from becoming infected and maintain a barrier between the tissue and its surroundings. A suture would require extensive bandaging to achieve the same results. The polymer is particularly useful for hard-to-operate tissues or organs, such as the eye.  "We are exploring ophthalmology as a venue for SurgiLux in human patients. SurgiLux can be readily applied to the eye during surgery, and can seal the cornea in place during keratoplasty when sutures cannot," tells Dr. Foster.

Dr. Foster and his team chose to publish in JoVE to expedite adoption of the technology. While the concept of SurgiLux has been previously published, this is the first demonstration of its application with the laser. "Many surgeons want to adopt it immediately. However, people don't know how to use the lasers. JoVE can visually show that this is not a difficult system and that any group with a basic background in biochemistry can buy a laser and get to work testing SurgiLux."

Foster et. al. http://www.jove.com/video/3527/a-chitosan-based-laser-activated-thin-film-surgical-adhesive-surgilux

About JoVE, The Journal of Visualized Experiments:

JoVE, the Journal of Visualized Experiments, is the first and only PubMed/MEDLINE-indexed, peer-reviewed journal devoted to publishing scientific research in a video format. Using an international network of videographers, JoVE films and edits videos of researchers performing new experimental techniques at top universities, allowing students and scientists to learn them much more quickly. As of April 2014, JoVE has published video-protocols from an international community of more than 9,300 authors in the fields of biology, medicine, chemistry, and physics.

URL: www.jove.com

To link to this release, please use this link: http://www.jove.com/about/press-releases/47/new-bio-adhesive-polymer-demonstrated-in-jove

Contact:
Phil Meagher
Marketing Associate
Journal of Visualized Experiments
p. 617.945.9051
e. press@jove.com


Press Access

We offer complimentary access to verified press contacts. If you are interested in being on our press list, please create an account and send an email request to press@jove.com.

Please make sure to follow our Twitter (http://www.twitter.com/JoVEJournal) account. If you have any questions or requests, contact us at press@jove.com.

Waiting
simple hit counter