JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE General

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

In JoVE (1)

Other Publications (146)

Articles by Andrew K. Godwin in JoVE

 JoVE General

In vivo Imaging and Therapeutic Treatments in an Orthotopic Mouse Model of Ovarian Cancer

1Department of Medical Oncology, Women's Cancer Program, 2Transgenic Mouse Facility, Fox Chase Cancer Center


JoVE 2125

Orthotopic animal models of ovarian cancer replicate better human disease and therefore enhance our understanding of cancer progression and tumor response to therapy. A mouse model receives an intrabursal injection of luciferase-expressing ovarian tumor cells. Treatment is administered via oral gavage. Tumor growth is monitored by in vivo imaging system.

Other articles by Andrew K. Godwin on PubMed

Proteolytic Cleavage of the CD44 Adhesion Molecule in Multiple Human Tumors

Cell surface adhesion molecules are crucial for the development and/or pathogenesis of various diseases including cancer. CD44 has received much interest as a major adhesion molecule that is involved in tumor progression. We have previously demonstrated that the ectodomain of CD44 undergoes proteolytic cleavage by membrane-associated metalloproteases in various tumor cell lines. The remaining membrane-bound CD44 cleavage product can be detected using antibodies against the cytoplasmic domain of CD44 (anti-CD44cyto antibody). However, the cleavage of CD44 in primary human tumors has not been investigated. Using Western blots with anti-CD44cyto antibody to assay human tumor tissues, we show that the CD44 cleavage product can be detected in 58% (42 of 72) of gliomas but not in normal brain. Enhanced CD44 cleavage was also found in 67% (28 of 42) of breast carcinomas, 45% (5 of 11) of non-small cell lung carcinomas, 90% (9 of 10) of colon carcinomas, and 25% (3 of 12) of ovarian carcinomas. Tumors expressing a CD44 splice variant showed a significantly higher incidence of enhanced CD44 cleavage. The wide prevalence of CD44 cleavage suggests that it plays an important role in the pathogenesis of human tumors.

Decreased Expression of Retinol-binding Proteins is Associated with Malignant Transformation of the Ovarian Surface Epithelium

We have developed a modified form of suppression subtractive hybridization (SSH) that allows multiple specimens of distinct phenotypic groups to be compared for consistent differences in gene expression. We applied this system to identify genes that were expressed in normal rat ovarian surface epithelial (ROSE) cells but whose expression was lost/downregulated in four independently transformed rat ovarian cancer cell lines. Northern blot analysis using 14 of 28 nonredundant cDNA fragments from this difference library showed that the mRNA transcripts were present in normal ROSE cells but lost or markedly downregulated in four related transformed cell lines. Of particular interest, cellular retinol-binding protein 1 (CRBP1) and retinol-binding protein (RBP), two genes whose products are involved in retinol transport and metabolism, were found to be downregulated in this ovarian cancer model system. To determine if this change had relevance to human ovarian cancer, we evaluated a series of human ovarian cancer cell lines and a limited number of frozen human ovarian tumors and found lost or decreased expression of CRBP1 and RBP relative to expression in human ovarian surface epithelial (HOSE) cells. We hypothesize that the loss of CRBP1 and RBP expression disrupts retinol metabolism and retinoic acid production, which may facilitate the occurrence of genetic damage leading to the malignant transformation of the ovarian surface epithelium, the cells from which ovarian cancer arises.

Telomere Length Changes in Human Cancer

OVCA2 is Downregulated and Degraded During Retinoid-induced Apoptosis

Retinoids, the natural and synthetic derivatives of vitamin A, have been shown to regulate the growth and differentiation of a wide variety of cell types and consequently have enormous potential as chemotherapeutic agents. We have previously identified 2 genes, termed OVCA1 and OVCA2, which are located in a small region showing a high frequency of allelic loss in breast and ovarian tumors and share a common exon. Recent studies have suggested that expression of OVCA1 may be influenced by retinoids. Therefore, we analyzed the expression of OVCA1 and OVCA2 in cells in response to treatment with all-trans retinoic acid (RA) and N-(4-hydroxyphenyl)retinamide (4HPR), or under conditions of low serum and confluence, to determine further the roles of OVCA1 and OVCA2 in cell growth, apoptosis and differentiation. We show that OVCA2 mRNA and protein are ubiquitously expressed and that they are downregulated in the lung cancer cell line Calu-6 after treatment with RA and 4HPR. In addition, we observed that OVCA2 protein is proteolytically degraded in response to RA and 4HPR treatment in a time- and dose-dependent manner in the promyelocytic leukemia cell line HL60. In contrast, expression of the candidate tumor suppressor OVCA1 was not downregulated by these treatments. Furthermore, we demonstrate that OVCA2 is evolutionarily conserved and shows regional homology with dihydrofolate reductases (DHFRs), specifically with hydrolase folds found in alpha-beta hydrolases. Our results are in contrast to a previous report and show that OVCA2, not OVCA1 mRNA and protein, is downregulated in response to RA and 4HPR.

Molecular Events Associated with Dysplastic Morphologic Transformation and Initiation of Ovarian Tumorigenicity

Disabled-2 (Dab2), a candidate tumor suppressor of ovarian carcinoma, frequently (around 80%) loses its expression in ovarian tumors. Expression of exogenous Dab2 in tumor cell lines negatively regulates growth and suppresses the downstream signal of the Ras/mitogen activated protein kinase mitogenic pathway. The inactivation of Dab2 is believed to be an early event in ovarian tumorigenicity.

Comparison of DNA- and RNA-based Methods for Detection of Truncating BRCA1 Mutations

A number of methods are used for mutational analysis of BRCA1, a large multi-exon gene. A comparison was made of five methods to detect mutations generating premature stop codons that are predicted to result in synthesis of a truncated protein in BRCA1. These included four DNA-based methods: two-dimensional gene scanning (TDGS), denaturing high performance liquid chromatography (DHPLC), enzymatic mutation detection (EMD), and single strand conformation polymorphism analysis (SSCP) and an RNA/DNA-based protein truncation test (PTT) with and without complementary 5' sequencing. DNA and RNA samples isolated from 21 coded lymphoblastoid cell line samples were tested. These specimens had previously been analyzed by direct automated DNA sequencing, considered to be the optimum method for mutation detection. The set of 21 cell lines included 14 samples with 13 unique frameshift or nonsense mutations, three samples with two unique splice site mutations, and four samples without deleterious mutations. The present study focused on the detection of protein-truncating mutations, those that have been reported most often to be disease-causing alterations that segregate with cancer in families. PTT with complementary 5' sequencing correctly identified all 15 deleterious mutations. Not surprisingly, the DNA-based techniques did not detect a deletion of exon 22. EMD and DHPLC identified all of the mutations with the exception of the exon 22 deletion. Two mutations were initially missed by TDGS, but could be detected after slight changes in the test design, and five truncating mutations were missed by SSCP. It will continue to be important to use complementary methods for mutational analysis.

Gamma-synuclein Promotes Cancer Cell Survival and Inhibits Stress- and Chemotherapy Drug-induced Apoptosis by Modulating MAPK Pathways

Synucleins are a family of highly conserved small proteins predominantly expressed in neurons. Recently we and others have found that gamma-synuclein is dramatically up-regulated in the vast majority of late-stage breast and ovarian cancers and that gamma-synuclein over-expression can enhance tumorigenicity. In the current study, we have found that gamma-synuclein is associated with two major mitogen-activated kinases (MAPKs), i.e. extracellular signal-regulated protein kinases (ERK1/2) and c-Jun N-terminal kinase 1 (JNK1), and have shown that over-expression of gamma-synuclein leads to constitutive activation of ERK1/2 and down-regulation of JNK1 in response to a host of environmental stress signals, including UV, arsenate, and heat shock. We also tested the effects of gamma-synuclein on apoptosis and activation of JNK and ERK in response to several chemotherapy drugs. We have found that gamma-synuclein-expressing cells are significantly more resistant to the chemotherapeutic drugs paclitaxel and vinblastine as compared with the parental cells. The resistance to paclitaxel can be partially obliterated when ERK activity is inhibited using a MEK1/2 inhibitor. Activation of JNK and its downstream caspase-3 by paclitaxel or vinblastine is significantly down-regulated in gamma-synuclein-expressing cells, indicating that the paclitaxel- or vinblastine-activated apoptosis pathway is blocked by gamma-synuclein. In contrast to paclitaxel and vinblastine, etoposide does not activate JNK, and gamma-synuclein over-expression has no apparent effect on this drug-induced apoptosis. Taken together, our data indicate that oncogenic activation of gamma-synuclein contributes to the development of breast and ovarian cancer by promoting tumor cell survival under adverse conditions and by providing resistance to certain chemotherapeutic drugs.

Elevated JNK Activation Contributes to the Pathogenesis of Human Brain Tumors

The ERK pathway is typically associated with activation of the EGF receptor and has been shown to play a major role in promoting several tumor phenotypes. An analogous signaling module, the JNK pathway, has not been shown to be consistently activated by the EGF receptor but is instead more uniformly stimulated by cellular stresses and cytokines. The function of the JNK pathway in primary tumors is unclear as it has been implicated in both promoting apoptosis and cell growth in vitro, which may be a reflection of the cell lines chosen. Primary human brain tumors frequently show overexpression of the EGF receptor. To clarify the role of JNK in tumorigenesis, we have investigated the role of JNK in a large panel of primary human brain tumors and tumor derived cell lines. Here we present evidence that JNK has a major role in promoting tumorigenesis both in vivo and in vitro. Western blot analysis demonstrated that 86% (18 of 21) of primary brain tumors showed evidence of JNK activation but only 38% (8 of 21) showed evidence of ERK activation. Kinase assays revealed that 77% of brain tumor cell lines activated JNK in response to EGF (7 of 13) or had high levels of basal activity (3 of 13), whereas none of six normal cell lines analysed, including astrocytes, had these properties. Of several growth factors examined, EGF produced the highest level of JNK induction in tumor cell lines and the duration of activation was greater than that seen for ERK. Expression of a dominant-negative (dn) form of JNK potently inhibited EGF mediated anchorage independent growth and protection from cell death in two glial tumor cell lines. These findings demonstrate that enhanced JNK activation is frequently found in primary brain tumors and that this activation contributes to phenotypes related to transformation.

Ras/MAPK Pathway Confers Basement Membrane Dependence Upon Endoderm Differentiation of Embryonic Carcinoma Cells

The formation of extraembryonic endoderm is one of the earliest steps in the differentiation of pluripotent cells of the inner cell mass during the early stages of embryonic development. The primitive endoderm cells and the derived parietal and visceral endoderm cells gain the capacity to produce collagen IV and laminin. The deposition of these components results in the formation of basement membrane and epithelium of the endoderm, with polarized cells covering the inner surface of the blastocoels. We used retinoic acid-induced endoderm differentiation of stem cell-like F9 embryonic carcinoma cells to study the role of the Ras pathway and its regulation in the formation of the visceral endoderm. Upon endoderm differentiation of F9 cells induced by retinoic acid, c-Fos expression, the downstream target of the Ras pathway, is suppressed by uncoupling Elk-1 phosphorylation/activation to MAPK activity. However, attachment to matrix gel greatly enhances the activation of MAPK in endoderm cells but not in undifferentiated F9 cells. Enhanced MAPK activation as a result of contact with basement membrane is able to compensate for reduced Elk-1 phosphorylation and c-Fos expression. We conclude that endoderm differentiation renders the activation of the Ras pathway basement membrane dependent, contributing to the epithelial organization of the visceral endoderm.

DNA Array-based Method for Detection of Large Rearrangements in the BRCA1 Gene

In most families with multiple cases of breast and ovarian cancer, the cancer appears to be associated with germline alterations in BRCA1 or BRCA2. However, somatic mutations in BRCA1 and BRCA2 in sporadic breast and ovarian tumors are rare, even though loss of heterozygosity in BRCA1 and BRCA2 loci in these tumors appears frequently. This may be attributed to mutation detection assays that detect alterations in the coding regions and splice site junctions, but that miss large gene rearrangements. To look specifically for mutations such as large gene rearrangements that span several kilobases (kb) of genomic DNA, we have developed a fluorescence DNA microarray assay. This assay rapidly and simultaneously screens for such rearrangements along the entire gene. In our screen of 15 malignant ovarian tumors, we found one sample with a novel 3-kb deletion encompassing exon 17 of BRCA1 that leads to a frameshift mutation. This deletion was not detected in the corresponding constitutive DNA. Our results indicate that, whereas somatic mutations in BRCA1 appear to be rare in ovarian cancers, the search for large gene rearrangements should be included in any BRCA1 mutational analysis. Furthermore, the method described in this report has the potential to screen clinical tumor samples for genomic rearrangements simultaneously in a large number of cancer-associated genes.

Dynamic Alterations of the Extracellular Environment of Ovarian Surface Epithelial Cells in Premalignant Transformation, Tumorigenicity, and Metastasis

Ovarian surface epithelial cells are positionally organized as a single cell layer by a sheet of basement membrane. It is believed that the contact of the ovarian surface epithelial cells with the basement membrane regulates cell growth and ensures the organization of the epithelium. Disabled-2 (Dab2), a signal transduction protein and a candidate tumor suppressor of ovarian carcinoma, functions in positional organization of ovarian surface epithelial cells. In ovarian carcinomas, genetic and epigenetic changes enable the tumor cells to escape positional control and proliferate in a disorganized fashion. Alterations in the extracellular environment may also be critical for tumor initiation and progression.

Hypomethylation of the Synuclein Gamma Gene CpG Island Promotes Its Aberrant Expression in Breast Carcinoma and Ovarian Carcinoma

Recent studies indicate that synuclein gamma (SNCG) gene, located in chromosome 10, participates in the pathogenesis of the breast and ovary. SNCG, also known as breast cancer-specific gene 1 (BCSG1), is not expressed in normal mammary or ovarian surface epithelial cells but is highly expressed in the vast majority of advanced staged breast and ovarian carcinomas. When overexpressed, SNCG significantly stimulates breast cancer proliferation and metastasis. To fully understand the molecular mechanisms underlying the abnormal expression of SNCG in neoplastic diseases, in this study, we extensively examined the methylation status of a CpG island located in exon 1 of SNCG gene in a panel of breast and ovarian tumor-derived cell lines to determine whether DNA methylation plays a crucial role in SNCG expression. In vivo bisulfite DNA sequencing of genomic DNA isolated from breast cancer cell lines showed that the 15 CpG sites within the CpG island were completely unmethylated in all SNCG-positive cell lines (5 of 5), but were densely and heterogeneously methylated in the majority of SNCG-negative cell lines (3 of 4). The methylation occurred primarily at the CpG sites 2, 5, 7, and 10-15. Similarly, we observed a strong correlation of hypomethylation of the CpG island and SNCG expression in ovarian cancer cell lines (5 of 5). Intriguingly, the methylation pattern in ovarian cancer cells is different from that in breast cancer cells. In SNCG-nonexpressing ovarian cancer cells, all 15 of the CpG sites were completely methylated instead of selective methylation at certain sites shown in breast cancer cells, thereby suggesting a tissue-specific methylation pattern. A correlation between hypomethylation of the exon 1 and expression of SNCG mRNA was also observed in primary breast tumor tissues. The importance of DNA methylation in the control of SNCG expression in cancer cells is further strengthened by demonstration of re-expression of SNCG mRNA in SNCG-negative ovarian and breast cancer cells with a demethylating agent 5-aza-2'-deoxycytidine. In addition, we demonstrate that inhibition of cell growth leads to a decreased mRNA expression and an increased DNA methylation of SNCG gene. Taken together, these new findings strongly suggest that DNA hypomethylation is a common mechanism underlying the abnormal expression of this candidate oncogene in breast and ovarian carcinomas.

Microarrays in Cancer: Research and Applications

Communication of BRCA1 and BRCA2 Results to At-risk Relatives: a Cancer Risk Assessment Program's Experience

We describe results from a survey designed to assess patterns of communication within families shortly after an individual receives results of BRCA1 and BRCA2 mutation carrier status. Shortly after disclosure of BRCA1 and BRCA2 genetic test results, the proband was contacted by phone to administer the post disclosure survey. Questions asked included whether they had shared their results with their siblings or adult children, if there were difficulties in communicating the test results, and if there was any distress associated with the sharing of results. A total of 162 women who have received results from BRCA1 and BRCA2 genetic testing participated in the survey. The probands shared their results more often with their female than their male relatives (P < 0.001). Probands who had tested positive for a mutation in the BRCA1 or BRCA2 gene shared their results more often with their relatives than did probands who were not carriers (P = 0.002). Probands reported more often that their siblings rather than their adult children had difficulties understanding the results (P = 0.001). The probands who were carriers more often reported having difficulties explaining their results to their relatives (P < 0.001) and their relatives were upset on hearing the result more often than were the relatives of probands who were not carriers (P < 0.001). The probands who were carriers reported more often that they were upset explaining their results to their relatives than did the probands who were not carriers (P < 0.001). Individuals are disclosing their test results to their relatives. Probands who are BRCA1- or BRCA2-positive are more likely to experience difficulty and distress with the communication of their test results to family members.

Expression of Constitutively Activated EGFRvIII in Non-small Cell Lung Cancer

The epidermal growth factor receptor (EGFR) variant type III (variously called EGFRvIII, de2-7 EGFR or deltaEGFR) has an in-frame deletion of the extracellular domain and is found in numerous types of human tumors. Since EGFRvIII has been reported to be tumor-specific and has oncogenic potential, it is being investigated as a potential therapeutic target. Because the cell-specific expression of EGFRvIII in lung has not been well documented, we examined the expression of EGFRvIII in 76 non-small cell lung cancers (NSCLCs) and 10 non-neoplastic lung tissues by immunohistochemistry using a new monoclonal antibody specific for this variant receptor. We found a higher incidence (30 of 76, 39%) of enhanced EGFRvIII expression in NSCLC than previously described. Interestingly, the presence of EGFRvIII was also observed in several normal tissue components of lung (e.g., normal bronchial epithelium). Given the high prevalence of EGFRvIII in NSCLC, a newly developed phospho-specific (activated) EGFR antibody was employed for immunohistochemical analysis that permitted visualization of activated EGFR and/or EGFRvIII in tumors. This study presents evidence, for the first time, that EGFRvIII expressed in human tumors is phosphorylated and hence activated. Our results suggest that the sustained activation of EGFRvIII is implicated in the pathogenesis of NSCLC and thus EGFRvIII is a potential therapeutic target in this challenging disease.

Parkin, a Gene Implicated in Autosomal Recessive Juvenile Parkinsonism, is a Candidate Tumor Suppressor Gene on Chromosome 6q25-q27

In an effort to identify tumor suppressor gene(s) associated with the frequent loss of heterozygosity observed on chromosome 6q25-q27, we constructed a contig derived from the sequences of bacterial artificial chromosomeP1 bacteriophage artificial chromosome clones defined by the genetic interval D6S1581-D6S1579-D6S305-D6S1599-D6S1008. Sequence analysis of this contig found it to contain eight known genes, including the complete genomic structure of the Parkin gene. Loss of heterozygosity (LOH) analysis of 40 malignant breast and ovarian tumors identified a common minimal region of loss, including the markers D6S305 (50%) and D6S1599 (32%). Both loci exhibited the highest frequencies of LOH in this study and are each located within the Parkin genomic structure. Whereas mutation analysis revealed no missense substitutions, expression of the Parkin gene appeared to be down-regulated or absent in the tumor biopsies and tumor cell lines examined. In addition, the identification of two truncating deletions in 3 of 20 ovarian tumor samples, as well as homozygous deletion of exon 2 in the lung adenocarcinoma cell lines Calu-3 and H-1573, supports the hypothesis that hemizygous or homozygous deletions are responsible for the abnormal expression of Parkin in these samples. These data suggest that the LOH observed at chromosome 6q25-q26 may contribute to the initiation andor progression of cancer by inactivating or reducing the expression of the Parkin gene. Because Parkin maps to FRA6E, one of the most active common fragile sites in the human genome, it represents another example of a large tumor suppressor gene, like FHIT and WWOX, located at a common fragile site.

Response Markers and the Molecular Mechanisms of Action of Gleevec in Gastrointestinal Stromal Tumors

Gastrointestinal stromal tumors (GISTs), defined by the presence of constitutively activated KIT, are the most common gastrointestinal mesenchymal malignancies. This observation has been successfully exploited in clinical trials of Gleevec (also known as imatinib mesylate, STI-571) for patients with unresectable and/or metastatic GISTs. The biological mechanisms of Gleevec as well as its downstream molecular effects are generally unknown. We used a DNA microarray-based approach to identify gene expression patterns and signaling pathways that were altered in response to Gleevec in GIST cells. We identified a total of 148 genes or expressed sequence tags (of 10,367) that were differentially regulated; 7 known genes displayed a durable response after treatment. The significantly down-regulated genes were SPRY4A, FZD8, PDE2A, RTP801, FLJ20898, and ARHGEF2. The only up-regulated gene was MAFbx. On a functional level, we demonstrated that imatinib inhibited phosphorylation of KIT, AKT, and extracellular signal-regulated kinase 1/2 without affecting the total level of these proteins and that differential expression of these response genes involved activation of mitogen-activated protein kinase-dependent and -independent pathways. In an attempt to correlate these in vitro findings to clinical data, we examined GIST needle biopsy specimens taken from patients before and after Gleevec administration according to the CSTI571-B2222 Phase II trial and demonstrated that expression levels of the two gene transcripts evaluated correlated well with clinical response. This study emphasizes the potential value of an in vitro cell model to investigate GIST response to imatinib in vivo, for the purpose of identifying important genetic markers of clinical response, mechanisms of drug action, and possible therapeutic targets.

Anomalous Expression of Epithelial Differentiation-determining GATA Factors in Ovarian Tumorigenesis

Tumor cells often appear in a deviant differentiated stage, and dedifferentiation is a hallmark of malignancy; however, the causative mechanism of the global changes in dedifferentiation is not understood. The GATA transcription factors function in cell lineage specification during embryonic development and organ formation. The transcriptional targets of the GATA factors in early embryonic development include Disabled-2 and collagen IV, markers for epithelial lineages. GATA-4 and GATA-6 are expressed strongly and are localized in the nucleus in ovarian surface epithelial cells in tissues or primary cell cultures. By immunohistochemistry, we found that 82% of the 50 tumors analyzed had lost GATA-6 function, either by a complete absence of expression or by cytoplasmic mislocalization. The frequent loss of GATA-6 was also confirmed in a panel of ovarian surface epithelial and tumor cell lines. Although GATA-4 is absent only in a small percentage (14%) of ovarian tumors, it is lost in the majority of established cell lines in culture. The loss of GATA-6 correlates with the loss of Disabled-2, collagen IV, and laminin, markers for epithelial cell types. Loss of GATA factors was also found in an in vitro model for spontaneous transformation of rat ovarian epithelial cells. Repression of GATA-6 by small interfering (si)RNA approach in cultured cells leads to dedifferentiation as indicated by the loss of Disabled-2 and laminin expression. Restoration of GATA factors expression by ectopic transfection suppresses cell growth and is incompatible with the maintenance of the cells in culture. However, restoration of GATA-4 and GATA-6 expression is not able to induce expression of endogenous Disabled-2 in tumor cells, suggesting that the loss of GATA factors and dedifferentiation are irreversible processes. In conclusion, we observed the inappropriate expression and cellular localization of the GATA transcription factors in ovarian tumor tissues and cancer cell lines, and we have demonstrated that down-regulation of GATA factor expression leads to dedifferentiation. We propose that alterations of GATA transcription factor expression and aberrant nucleocytoplasmic localization may contribute to the anomalous epithelial dedifferentiation of the ovarian tumor cells.

The BCSC-1 Locus at Chromosome 11q23-q24 is a Candidate Tumor Suppressor Gene

Frequent allelic loss at human chromosome 11q23-q24 occurs in a wide variety of cancers, suggesting that this region may harbor a tumor suppressor gene. By constructing a physical map of the LOH11CR2 minimal region of loss on 11q23-q24 associated with lung and breast carcinomas, we were able to clone a hereditary translocation, t(11;12)(q23;q24), in a patient with early-onset breast cancer and family history of cancer. The breakpoint was found within 6 kb of the BCSC-1 candidate tumor suppressor gene located in the LOH11CR2 region whereas additional loss of heterozygosity (LOH) analysis in breast and ovarian tumors, including that of the patient with the t(11;12)(q23;q24), implicated the BCSC-1 locus as the primary target of deletion. Northern analysis of the BCSC-1 mRNA revealed a lack of expression in 33 of 41 (80%) tumor cell lines, and its ectopic expression led to the suppression of colony formation in vitro and tumorigenicity in vivo. These data suggest that BCSC-1 may exert a tumor suppressor activity and is a likely target of the LOH observed on 11q23-q24 in cancer.

Regulation of BRCC, a Holoenzyme Complex Containing BRCA1 and BRCA2, by a Signalosome-like Subunit and Its Role in DNA Repair

We have isolated a holoenzyme complex termed BRCC containing BRCA1, BRCA2, and RAD51. BRCC not only displays increased association with p53 following DNA damage but also ubiquitinates p53 in vitro. BRCC36 and BRCC45 are novel components of the complex with sequence homology to a subunit of the signalosome and proteasome complexes. Reconstitution of a recombinant four-subunit complex containing BRCA1/BARD1/BRCC45/BRCC36 revealed an enhanced E3 ligase activity compared to that of BRCA1/BARD1 heterodimer. In vivo, depletion of BRCC36 and BRCC45 by the small interfering RNAs (siRNAs) resulted in increased sensitivity to ionizing radiation and defects in G2/M checkpoint. BRCC36 shows aberrant expression in sporadic breast tumors. These findings identify BRCC as a ubiquitin E3 ligase complex that enhances cellular survival following DNA damage.

Altered Expression of the Septin Gene, SEPT9, in Ovarian Neoplasia

The septin family of genes has been implicated in a variety of cellular processes including cytokinesis, membrane transport and fusion, exocytosis, and apoptosis. One member of the septin family maps to chromosome 17q25.3, a region commonly deleted in sporadic ovarian and breast tumours, and has also been identified as a fusion partner of MLL in acute myeloid leukaemias. The present study demonstrates that the pattern of expression of multiple splice variants of this septin gene is altered in ovarian tumours and cell lines. In particular, expression of the zeta transcript is detectable in the majority of tumours and cell lines, but not in a range of non-malignant adult and fetal tissues. Zeta expression is accompanied by loss of the ubiquitous beta transcript. Somatic mutations of the gene were not detected in ovarian tumours, but it was demonstrated that beta expression in tumour cell lines can be reactivated by 5-azacytidine treatment, suggesting a role for methylation in the control of expression of this gene.

Loss of Surface and Cyst Epithelial Basement Membranes and Preneoplastic Morphologic Changes in Prophylactic Oophorectomies

The authors suggested that the loss of collagen IV and laminin-containing basement membrane and the loss of Disabled-2 (Dab2) expression were two critical events associated with morphologic dysplastic changes of the ovarian surface epithelium as a step in tumorigenicity. Both the basement membrane and Dab2, a candidate tumor suppressor of ovarian carcinoma, were involved in epithelial cell surface positioning and organization. The authors speculated that the purging of the basement membrane may be similar to the proteolysis during gonadotropin-stimulated ovulation, a cyclooxygenase 2 (Cox-2)-mediated process.

Focus on Epithelial Ovarian Cancer

Tumor Necrosis Factor-alpha-induced Matrix Proteolytic Enzyme Production and Basement Membrane Remodeling by Human Ovarian Surface Epithelial Cells: Molecular Basis Linking Ovulation and Cancer Risk

The majority of cancer is of surface/cyst epithelial origin. The ovarian surface epithelial cells are organized by a sheet of basement membrane composed mainly of collagen IV and laminin, and it is believed that the basement membrane greatly influences the physiological properties of ovarian surface epithelial cells. Previous studies in our laboratories indicated that loss of the basement membrane, an obligated step in ovulation, is also a critical step during the morphological transformation and tumor initiation of the ovarian surface epithelium. It is speculated that the loss of basement membrane in ovarian surface epithelial transformation may have similar biological mechanism to the loss of surface epithelial basement membrane in ovulation. However, the mechanisms involved in the ovarian surface epithelial basement membrane removal during ovulation are still not completely understood. In the current study, cultured human ovarian surface epithelial (HOSE) cells were examined for their abilities to produce matrix hydrolyzing enzymes and degrade basement membrane in response to a number of potential local mediators in ovulation. Among the candidate-stimulating factors tested, tumor necrosis factor (TNF)-alpha and IL-1beta (to a lesser extent) were found to drastically increase urokinase type plasminogen activator (uPA) and matrix metalloproteinase (MMP)-9 activities secreted from HOSE cells. MMP-2, the other major HOSE cell-secreted gelatinase, is constitutively produced but not regulated. As demonstrated by immunofluorescence staining and Western blot analysis, TNF-alpha treatment caused the degradation and structural reorganization of collagen IV and laminin secreted and deposited by HOSE cells in culture. Amiloride, an uPA inhibitor, not only inhibited the activity of uPA but was also able to suppress TNF-alpha-stimulated MMP-9 activity and prevented the TNF-alpha-stimulated remodeling of the basement membrane extracellular matrix, suggesting the contribution of uPA-mediated proteolytic cascade in this process. This study implicates the potential roles of TNF-alpha, uPA, and MMP-9 in ovarian surface epithelial basement membrane degradation and remodeling, which are processes during ovulation and may contribute to epithelial transformation. The findings may underscore the importance of TNF-alpha, uPA, and MMP-9 in ovarian surface epithelial basement membrane remodeling and may provide a molecular mechanism linking ovulation and ovarian cancer risk.

Identification of a Second G-C-rich Promoter Conserved in the Human, Murine and Rat Tumor Suppressor Genes HIC1

The BTB/POZ transcriptional repressor HIC1 (Hypermethylated in Cancer 1) is a tumor suppressor gene located at chromosome 17p13.3, a region frequently hypermethylated or deleted in human tumors and in a contiguous-gene syndrome, the Miller-Dieker syndrome. The human and murine HIC1 genes are composed of two alternative 5' exons, 1a and 1b fused to a large second coding exon 2. Exon 1a is a noncoding exon associated with a major G-C-rich promoter whereas exon 1b is a downstream coding exon associated with a minor TATA box promoter. By human-mouse genome comparison, we have identified a short upstream conserved sequence containing G-C boxes which were shown to be functional. Transcripts initiating from this new promoter were detected in various human and mouse tissues and contained a long 5'-UTR sequence, called 1c which encompass the G-C-rich promoter associated with exon 1a and uses the same splice donor site. RT-PCR analyses of two primary breast epithelial cell lines identified two other 5'-UTRs generated by alternative splicing within exon 1c. Our results thus highlight the existence of an unexpected complex transcriptional regulation of HIC1.

AKT and MTOR Phosphorylation is Frequently Detected in Ovarian Cancer and Can Be Targeted to Disrupt Ovarian Tumor Cell Growth

Activation of the PI3K/AKT pathway may contribute to tumorigenesis. AKT mediates survival signals that protect cells from apoptosis and, thus, is a potentially important therapeutic target. To determine the frequency of AKT activation in human ovarian cancer, we screened a tumor tissue microarray with a phospho-specific pan-AKT (Ser473) antibody, which revealed elevated staining in 21 of 31 (68%) ovarian carcinomas. Phospho-AKT staining was associated with that of phospho (active)-mTOR in 27 of 31 (87%) ovarian tumors, with 17 (55%) tumors showing elevated phospho-mTOR positivity. We tested the effects of AKT/mTOR activation on the therapeutic sensitivity of ovarian cancer cells. Pretreatment of SKOV3 cells, which exhibit constitutive AKT activity under low serum conditions, with the PI3K inhibitor LY294002 augmented cisplatin-induced apoptosis. In contrast, ovarian cancer cell lines OVCAR4 and OVCAR5, which have low basal levels of AKT activity, did not show increased cisplatin-induced apoptosis when pretreated with LY294002. In addition, inhibition of mTOR activity with rapamycin resulted in G1 arrest in SKOV3 cells, but not in OVCAR4 or OVCAR5 cells. Collectively, these findings indicate that active AKT and downstream mTOR represent potentially important therapeutic and/or chemopreventive targets in ovarian cancer.

Altered Gene Expression in Phenotypically Normal Renal Cells from Carriers of Tumor Suppressor Gene Mutations

The inherently complex signaling networks of tumors result from genetic and epigenetic alterations that occur during cancer initiation and progression.

Proteome Changes in Ovarian Epithelial Cells Derived from Women with BRCA1 Mutations and Family Histories of Cancer

Malignant transformation of the ovarian surface epithelium (OSE) accounts for most ovarian carcinoma. Detection of preneoplastic changes in the OSE leading to overt malignancy is important in prevention and management of ovarian cancer. We identified OSE proteins with altered expression derived from women with a family history (FH) of ovarian and/or breast cancer and mutations in the BRCA1 tumor suppressor gene. Proteins from SV-40-transformed FH-OSE cell lines and control OSE lines derived from women without such histories (non-family history) were separated by two-dimensional PAGE. Gels were analyzed, a protein data base was created, and proteins were characterized according to their molecular weight, isoelectric point, and relative abundance. Mass spectrometry was performed on tryptic protein digests, and data bases were searched for known proteins with the same theoretical tryptic peptide masses. Several proteins showed altered expression in the FH-OSE cells. Beta-tubulin and to a lesser extent ubiquitin carboxyl-terminal hydrolase and glyoxalase 1 appeared to be up-regulated. In contrast, proteins suppressed in FH lines include the 27-kDa heat shock protein, translationally controlled tumor protein, and several proteins associated with actin modification such as actin prepeptide, F-actin capping protein alpha subunit, and cofilin. Sequencing of several cofilin gel spots revealed phosphorylation of serine 3, a post-translational modification associated with decreased actin binding and cytoskeletal reorganization. Two-dimensional Western blots probed with cofilin antibody showed multiple protein spots with isoelectric points of 6-9 pH units. Blots of one-dimensional gels showed a significant reduction in cofilin expression in three FH lines when compared with three non-family history lines (p < or = 0.05). Identification of these and other OSE proteins may be useful in detecting changes suggestive of increased risk of developing preneoplastic disease and defining the possible role(s) of the BRCA1 gene in regulation of OSE cell function.

Linking Transcriptional Elongation and Messenger RNA Export to Metastatic Breast Cancers

The biochemical pathways that are disrupted in the genesis of sporadic breast cancers remain unclear. Moreover, the present prognosticating markers used to determine the prognosis of node-negative patient leads to probabilistic results, and the eventual clinical course is far from certain. Here we identified the human TREX complex, a multiprotein complex that links transcription elongation to mRNA transport, as culprit of aggressive human breast cancers. We show that whereas p84N5 (called hTREX84) is expressed at very low levels in normal breast epithelial cells, it is highly expressed in breast tumors. Importantly, hTREX84 expression correlates with tumor size and the metastatic state of the tumor progression. Reduction of hTREX84 levels in breast cancer cell lines by small interfering RNA result in inhibition of cellular proliferation and abrogation of mRNA export. These results not only identify hTREX84 as a prognosticator of breast cancer but also delineate human TREX complex as a target for therapeutic drugs against breast cancer.

Familial Cancer Associated with a Polymorphism in ARLTS1

The finding of hemizygous or homozygous deletions at band 14 on chromosome 13 in a variety of neoplasms suggests the presence of a tumor-suppressor locus telomeric to the RB1 gene.

Analysis of KIT Mutations in Sporadic and Familial Gastrointestinal Stromal Tumors: Therapeutic Implications Through Protein Modeling

Gastrointestinal stromal tumors (GIST) are characterized by expressing a gain-of-function mutation in KIT, and to a lesser extent, PDGFR. Imatinib mesylate, a tyrosine kinase inhibitor, has activity against GISTs that contain oncogenic mutations of KIT. In this study, KIT and PDGFRalpha mutation status was analyzed and protein modeling approaches were used to assess the potential effect of KIT mutations in response to imatinib therapy.

WWOX Protein Expression Varies Among Ovarian Carcinoma Histotypes and Correlates with Less Favorable Outcome

The putative tumor suppressor WWOX gene spans the common chromosomal fragile site 16D (FRA16D) at chromosome area 16q23.3-24.1. This region is a frequent target for loss of heterozygosity and chromosomal rearrangement in ovarian, breast, hepatocellular, prostate carcinomas and other neoplasias. The goal of these studies was to evaluate WWOX protein expression levels in ovarian carcinomas to determine if they correlated with clinico-pathological parameters, thus providing additional support for WWOX functioning as a tumor suppressor.

Loss of TNF-alpha-regulated COX-2 Expression in Ovarian Cancer Cells

Cyclooxygenase 2 (COX-2) is often found overexpressed in cancer and is thought to have a role in carcinogenic promotion, and thus is a target for therapeutic intervention. Here, we investigated the regulation of COX-2 expression in normal and cancer ovarian surface epithelial cells. Tumor necrosis factor alpha (TNF-alpha) is a potent inducer of COX-2 expression in the ovarian surface epithelium and this regulation is a critical step in ovulation. We observed that TNF-alpha stimulated COX-2 expression in human primary and immortalized epithelial (HIO) cell lines. The stimulation was suppressed by inhibitors of several signaling pathways, indicating the collaboration of TNF-alpha-activated signaling pathways mediates the regulation of COX-2 expression. In five ovarian cancer cell lines analysed, four did not express detectable COX-2 and TNF-alpha failed to elicit COX-2 expression. In NIH:OVCAR-5, the only ovarian cancer cell line expressing COX-2, signal pathway inhibitors no longer affected TNF-alpha-induced COX-2 expression. Thus, we conclude that TNF-alpha mediated signaling is uncoupled from the modulation of COX-2 expression in ovarian cancer. The loss of COX-2 expression was also observed to associate closely with epithelial neoplastic morphological transformation. The frequent loss of COX-2 expression suggests in ovarian cancer, unlike in other epithelial cancers, COX-2 expression does not contribute to ovarian cancer malignancy.

Phase II Study of Gefitinib in Patients with Relapsed or Persistent Ovarian or Primary Peritoneal Carcinoma and Evaluation of Epidermal Growth Factor Receptor Mutations and Immunohistochemical Expression: a Gynecologic Oncology Group Study

This phase II trial assessed the activity and tolerability of a daily oral dose of 500 mg gefitinib (ZD1839, Iressa) in patients with recurrent or persistent epithelial ovarian or primary peritoneal carcinoma, and explored the clinical value of determining the status of the epidermal growth factor receptor (EGFR).

Enhanced Counseling for Women Undergoing BRCA1/2 Testing: Impact on Subsequent Decision Making About Risk Reduction Behaviors

The authors evaluated the impact of an enhanced counseling intervention, designed to promote well-informed decision making for follow-up risk reduction options for ovarian cancer, among high-risk women undergoing BRCA1/2 testing (N = 77). Following standard genetic counseling, participants received either an enhanced counseling session--designed to help participants anticipate their reactions to possible test outcomes and plan for postresult consequences--or a general health information control session. One week after disclosure of test results, women in the enhanced counseling group experienced a greater reduction in avoidant ideation, suggesting more complete processing of risk feedback. At the 6-month follow-up, intervention respondents reported seeking out more information about prophylactic oophorectomy and were more likely to have actually undergone preventive surgery. The results indicate that the use of enhanced counseling can play an important role in decision making about risk reduction behaviors following BRCA1/2 testing.

Perception of Differentiation Cues by GATA Factors in Primitive Endoderm Lineage Determination of Mouse Embryonic Stem Cells

The formation of the primitive endoderm covering the inner cell mass of early mouse embryos can be simulated in vitro by the differentiation of mouse embryonic stem (ES) cells in culture following either aggregation of suspended cells or stimulation of cell monolayers with retinoic acid. The developmentally regulated transcription factors GATA-4 and GATA-6 have determining role in mouse extraembryonic endoderm development. We analyzed the in vitro differentiation of mouse embryonic stem cells deficient of GATA factors and conclude that GATA-4 is required for ES cells to perceive a cell positioning (cell aggregation) signal and GATA-6 is required to sense morphogenic (retinoic acid) signal. The collaboration between GATA-6 and GATA-4, or GATA-6 and GATA-5 which can substitute for GATA-4, is involved in the perception of differentiation cues by embryonic stem cells in their determination of endoderm lineage. This study indicates that the lineage differentiation of ES cells can be manipulated by the expression of GATA factors.

Molecular Research Directions in the Management of Gastrointestinal Stromal Tumors

Imatinib mesylate (STI571) is an oral 2-phenylaminopyrimidine derivative that acts as a selective inhibitor against several receptor tyrosine kinases and has been viewed as one of the therapeutic success stories of the 21st century. Imatinib was first shown to inhibit the causative molecular translocation in chronic myelogenous leukemia, BCR-ABL. Because imatinib could also inhibit the activity of KIT, a 145-kD transmembrane glycoprotein, and because gastrointestinal stromal tumors (GISTs), the most common mesenchymal tumors of the digestive tract, are characterized by expression of a gain-of-function mutation in KIT, imatinib was used in therapeutic trials of GISTs beginning in 1999. The initial success has now resulted in more widespread use of imatinib for the treatment of patients with GIST. Molecular genetic studies have shown that most GISTs possess a KIT mutation in exon 9, 11, 13, or 17. Clinically, GIST patients with KIT exon 11 mutations (ie, the juxtamembrane region) are the most prevalent and sensitive to imatinib. In addition to the inhibitory effect on KIT, imatinib also inhibits the activity of mutant platelet-derived growth factor receptor-alpha (PDGFRalpha) found in a subset of GIST. What is becoming evident is that there are patients with GIST who lack mutations in KIT or PDGFRalpha, or possess "imatinib-resistant" mutations (such as exon 17 mutations in KIT and exon 18 mutations in PDGFRalpha). These patients typically do not respond well to imatinib therapy. Therefore, identifying additional genetic factors that contribute to the pathogenesis of GIST, independent of KIT and PDGFRalpha, will be important in developing additional anti-GIST therapies. As one might suspect from previous experiences with antitumor therapies, primary and secondary resistance to imatinib is also becoming a major clinical problem in the treatment of this disease. Therefore, new drugs that can serve as alternative therapies in imatinib-resistant patients with GIST or that can be used in combination with imatinib will be needed. As with most recent efforts to derive novel molecular target therapies to treat cancer, improved therapy of GIST will continue to benefit from advances in the molecular characterization of this disease.

The Joint Effect of Smoking and AIB1 on Breast Cancer Risk in BRCA1 Mutation Carriers

Women with BRCA1 mutations are at an elevated risk for breast cancer. AIB1 (NCOA3/SRC3) genotype and smoking may alter this risk. We examined the differences in breast cancer risk by AIB1 polyglutamine repeat polymorphism and pre-diagnosis smoking habits for BRCA1 mutation carriers to determine if there was an interaction between smoking and AIB1 genotype. Multivariate Cox proportional hazards regression was used with 316 female BRCA1 mutation carriers to model breast cancer risk. Ever having smoked was associated with a decreased breast cancer risk [Hazard Ratio (HR) = 0.63, 95% CI, 0.47-0.87]. A dose-response relationship between number of pack-years smoked and breast cancer risk was also found for women who smoked <20 pack years of cigarettes (HR = 0.72, 95% CI, 0.52-1.00) and for women who smoked >/=20 pack years (HR = 0.41, 95% CI, 0.23-0.71; P for trend = 0.0007). Women with a 28 repeat allele for AIB1 had a significantly reduced risk of breast cancer (HR = 0.72, 95% CI, 0.51-1.00). Women who smoked >/=20 pack-years with a 28 repeat allele had an even greater reduced risk of breast cancer (HR = 0.19, 95% CI, 0.07-0.54) compared to women who were never smokers with no 28 allele. Since AIB1 appears to modulate the effect of endogenous hormones via the estrogen receptor, and smoking affects circulating hormone levels, these results support evidence that steroid hormones play an important role in breast carcinogenesis in BRCA1 mutation carriers, and suggest mechanisms for developing novel cancer prevention strategies for BRCA1 mutation carriers.

Mass Spectrometric Identification of Serine Hydrolase OVCA2 in the Medulloblastoma Cell Line DAOY

OVCA2 is a putative serine-hydrolase. Performing protein profiling in human tumour cell lines, OVCA2 was detected in DAOY medulloblastoma cells as a high abundance protein. The protein was unambiguously identified by 2D gel-electrophoresis and MALDI-MS and MS/MS, its presence was confirmed by western blotting. Immunohistochemistry revealed expression in medulloblastoma and predominantly in oligodendrocytes. Computational approaches predicted functional motifs and domains, interaction with apoptosis-related protein BAG and 3D structure. In addition to the presence of OVCA2 in medulloblastoma, it was furthermore detectable in three out of 10 human tumour cell-lines as a high abundance protein probably suggesting a role in the tumour biology.

The AIB1 Polyglutamine Repeat Does Not Modify Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

This is by far the largest study of its kind to date, and further suggests that AIB1 does not play a substantial role in modifying the phenotype of BRCA1 and BRCA2 carriers. The AIB1 gene encodes the AIB1/SRC-3 steroid hormone receptor coactivator, and amplification of the gene and/or protein occurs in breast and ovarian tumors. A CAG/CAA repeat length polymorphism encodes a stretch of 17 to 29 glutamines in the HR-interacting carboxyl-terminal region of the protein which is somatically unstable in tumor tissues and cell lines. There is conflicting evidence regarding the role of this polymorphism as a modifier of breast cancer risk in BRCA1 and BRCA2 carriers. To further evaluate the evidence for an association between AIB1 glutamine repeat length and breast cancer risk in BRCA1 and BRCA2 mutation carriers, we have genotyped this polymorphism in 1,090 BRCA1 and 661 BRCA2 mutation carriers from Australia, Europe, and North America. There was no evidence for an increased risk associated with AIB1 glutamine repeat length. Given the large sample size, with more than adequate power to detect previously reported effects, we conclude that the AIB1 glutamine repeat does not substantially modify risk of breast cancer in BRCA1 and BRCA2 mutation carriers.

BRCA1-associated Complexes: New Targets to Overcome Breast Cancer Radiation Resistance

Since BRCA1 was cloned a decade ago, significant progress has been made in defining its biochemical and biological functions, as well as its role in breast and ovarian cancers. BRCA1 has been implicated in many cellular processes, including DNA repair, cell cycle checkpoint control, protein ubiquitination and chromatin remodeling. This review examines the role(s) of BRCA1 in mediating these cellular processes, and discusses its potential involvement in the resistance of breast cancer to radiation-based therapies. Finally, the possibility that BRCA1-associated proteins may serve as new targets for breast cancer radiation therapy is explored. The activation or inactivation of these BRCA1-associated proteins may modify both the risk of developing cancers in BRCA1 mutation carriers and the efficacy of breast cancer therapy, including radiation.

Molecular Genetic Evidence That Endometriosis is a Precursor of Ovarian Cancer

Histopathology and epidemiology studies have consistently demonstrated a strong link between endometriosis and endometriosis-associated ovarian cancers (EAOCs)--in particular, the endometrioid and clear cell subtypes. However, it is still unclear whether endometriosis is a precursor to EAOCs, or whether there is an indirect link because similar factors predispose to both diseases. In order to search for evidence of clonal progression, we analyzed 10 EAOCs (endometrioid=4; clear cell=6) with coexisting endometriosis for common molecular genetic alterations in both the carcinoma and corresponding endometriosis. We used 82 microsatellite markers spanning the genome to examine loss of heterozygosity (LOH) in the coexisting carcinoma and endometriosis samples. A total of 63 LOH events were detected in the carcinoma samples; twenty two of these were also detected in the corresponding endometriosis samples. In each case, the same allele was lost in the endometriosis and cancer samples. Interestingly, no marker showed LOH in the endometriosis alone. These data provide evidence that endometriosis is a precursor to EAOCs.

White Spot Syndrome Virus Open Reading Frame 222 Encodes a Viral E3 Ligase and Mediates Degradation of a Host Tumor Suppressor Via Ubiquitination

We have characterized a white spot syndrome virus (WSSV) RING-H2-type protein, WSSV222, which is involved in ubiquitination. WSSV222 exhibits RING-H2-dependent E3 ligase activity in vitro in the presence of the specific conjugating enzyme UbcH6. Mutations in the RING-H2 domain abolished WSSV222-dependent ubiquitination, revealing the importance of this domain in WSSV222 function. Yeast two-hybrid and pull-down analyses revealed that WSSV222 interacts with a shrimp tumor suppressor-like protein (TSL) sharing 60% identity with human OVCA1. To better characterize the interaction of WSSV222 and TSL in vivo, we established a stable TSL-expressing cell line derived from the human ovarian cancer cell line A2780, where we observed a TSL-dependent prolonged G1 phase. Furthermore, we detected WSSV222-mediated ubiquitination and MG132-sensitive degradation of TSL both in shrimp primary cell culture and in the TSL-expressing cell line. Transient expression of TSL in BHK cells leads to apoptosis, which was rescued by WSSV222. Taken together, our data suggest that WSSV222 acts as an antiapoptosis protein by ubiquitin-mediated proteolysis of TSL to ensure successful WSSV replication in shrimp.

Intronic Alterations in BRCA1 and BRCA2: Effect on MRNA Splicing Fidelity and Expression

Germline mutations in the human breast cancer susceptibility genes BRCA1 and BRCA2 account for the majority of hereditary breast and ovarian cancer. In spite of the large number of sequence variants identified in BRCA1 and BRCA2 mutation analyses, many of these genetic alterations are still classified as variants of unknown significance (VUS). In this study, we evaluated 12 BRCA1/2 intronic variants in order to differentiate their pathogenic or polymorphic effects on the mRNA splicing process. We detected the existence of aberrant splicing in three BRCA1 variants (c.301-2delA/IVS6-2delA, c.441+1G>A/IVS7+1G>A, and c.4986+6T>G/IVS16+6T>G) and two BRCA2 variants (c.8487+1G>A/IVS19+1G>A and c.8632-2A>G/IVS20-2A>G). All but one of the aberrant transcripts arise from mutations affecting the conserved splice acceptor or donor sequences and all would be predicted to result in expression of truncated BRCA1 or BRCA2 proteins. However, we demonstrated that four of these splice-site mutations (i.e., c.301-2delA, c.441+1G>A, c.4986+6T>G, and c.8632-2A>G) with premature termination codons were highly unstable and were unlikely to encode for abundant expression of a mutant protein. Three variants of BRCA1 (c.212+3A>G/IVS5+3A>G, c.593+8A>G/IVS9+8A>G, and c.4986-20A>G/IVS16-20A>G) and four variants of BRCA2 (c.516-19C>T/IVS6-19C>T, c.7976-4_7976_3delTT/IVS17-4delTT, c.8487+19A>G/IVS19+19A>G, and c.9256- 18C>A/IVS24- 18C>A) in our studies show no effects on the normal splicing process, and they are considered to be benign polymorphic alterations. Our studies help to clarify the aberrant splicing in BRCA1 and BRCA2 as well as provide information that can be used clinically to help counsel breast/ovarian cancer prone families.

Age-dependent Morphological Alterations of Human Ovaries from Populations with and Without BRCA Mutations

From analysis of pre-cancer ovarian tissues obtained from prophylactic oophorectomies, several studies reported the increased ovarian morphological changes in high-risk ovaries, but whether these morphological changes are associated with BRCA1/BRCA2 genotypes or are cancer precursors is controversial. Here, we have investigated a recent collection of ovaries from prophylactic oophorectomies and control ovaries from surgeries due to other non-ovarian-related cancer or non-neoplastic diseases to determine if ovarian morphological changes relate to BRCA1/2 genotypes or reproductive history.

BRCC36 is Essential for Ionizing Radiation-induced BRCA1 Phosphorylation and Nuclear Foci Formation

We have previously reported the identification and characterization of a novel BRCA1/2 interacting protein complex, BRCC (BRCA1/2-containing complex). BRCC36, one of the proteins in BRCC, directly interacts with BRCA1, and regulates the ubiquitin E3 ligase activity of BRCC. Importantly, BRCC36 is aberrantly expressed in the vast majority of breast tumors, indicating a potential role in the pathogenesis of this disease. To further elucidate the functional consequence of abnormal BRCC36 expression in breast cancer, we have done in vivo silencing studies using small interfering RNAs targeting BRCC36 in breast cancer cell lines, i.e., MCF-7, ZR-75-1, and T47D. Knock-down of BRCC36 alone does not affect cell growth, but when combined with ionizing radiation (IR) exposure, it leads to an increase in the percentage of cells undergoing apoptosis when compared with the small interfering RNA control group in breast cancer cells. Immunoblot analysis shows that inhibition of BRCC36 has no effect on the activation of ATM, expression of p21 and p53, or BRCA1-BARD1 interaction following IR exposure. Importantly, BRCC36 depletion disrupts IR-induced phosphorylation of BRCA1. Immunofluorescent staining of BRCA1 and gamma-H2AX indicates that BRCC36 depletion prevents the formation of BRCA1 nuclear foci in response to DNA damage in breast cancer cells. These results show that down-regulation of BRCC36 expression impairs the DNA repair pathway activated in response to IR by inhibiting BRCA1 activation, thereby sensitizing breast cancer cells to IR-induced apoptosis.

Therapeutic Effect of Imatinib in Gastrointestinal Stromal Tumors: AKT Signaling Dependent and Independent Mechanisms

Most gastrointestinal stromal tumors (GISTs) possess a gain-of-function mutation in c-KIT. Imatinib mesylate, a small-molecule inhibitor against several receptor tyrosine kinases, including KIT, platelet-derived growth factor receptor-alpha, and BCR-ABL, has therapeutic benefit for GISTs both via KIT and via unknown mechanisms. Clinical evidence suggests that a potential therapeutic benefit of imatinib might result from decreased glucose uptake as measured by positron emission tomography using 18-fluoro-2-deoxy-d-glucose. We sought to determine the mechanism of and correlation to altered metabolism and cell survival in response to imatinib. Glucose uptake, cell viability, and apoptosis in GIST cells were measured following imatinib treatment. Lentivirus constructs were used to stably express constitutively active AKT1 or AKT2 in GIST cells to study the role of AKT signaling in metabolism and cell survival. Immunoblots and immunofluorescent staining were used to determine the levels of plasma membrane-bound glucose transporter Glut4. We show that oncogenic activation of KIT maximizes glucose uptake in an AKT-dependent manner. Imatinib treatment markedly reduces glucose uptake via decreased levels of plasma membrane-bound Glut4 and induces apoptosis or growth arrest by inhibiting KIT activity. Importantly, expression of constitutively active AKT1 or AKT2 does not rescue cells from the imatinib-mediated apoptosis although glucose uptake was not blocked, suggesting that the potential therapeutic effect of imatinib is independent of AKT activity and glucose deprivation. Overall, these findings contribute to a clearer understanding of the molecular mechanisms involved in the therapeutic benefit of imatinib in GIST and suggest that a drug-mediated decrease in tumor metabolism observed clinically may not entirely reflect therapeutic efficacy of treatment.

No Increased Risk of Breast Cancer Associated with Alcohol Consumption Among Carriers of BRCA1 and BRCA2 Mutations Ages <50 Years

Involvement of RHO GTPases and ERK in Synuclein-gamma Enhanced Cancer Cell Motility

Synuclein-gamma is aberrantly expressed in more than 70% of stage III/IV breast and ovarian carcinomas. Ectopic overexpression of synuclein-gamma enhanced MDA-MB-435 cell migration in vitro and metastasis in a nude mouse model. However, the mechanism of how synuclein-gamma promotes cell motility is not clear. In our previous studies, we showed that synuclein-gamma overexpression activates ERK. In the present study, we overexpressed synuclein-gamma in several breast and ovarian cancer cell lines and evaluated the effect of synuclein-gamma on the activity of small G-protein RHO family members. We found that at least one of the RHO/RAC/CDC42 GTPases showed a higher level of the GTP-bound active form. Consistent with their role in regulating the intracellular motile machinery, inhibition of the RHO/RAC/CDC42 by C. difficile Toxin B blocked cell migration in both parental cells and synuclein-gamma overexpressing cells. The ERK inhibitor U0126 also blocked the cell migration in both parental cells and synuclein-gamma overexpressing cells. Collectively, our data indicate that synuclein-gamma might be involved in late stage breast and ovarian cancer metastasis by enhancing cell motility through activation of the RHO family small-GTPases and ERK.

BRCA1 and BRCA2 Mutation Carriers, Oral Contraceptive Use, and Breast Cancer Before Age 50

Understanding the effect of oral contraceptives on risk of breast cancer in BRCA1 or BRCA2 mutation carriers is important because oral contraceptive use is a common, modifiable practice.

Alterations of the Tumor Suppressor Gene ARLTS1 in Ovarian Cancer

ARLTS1 is a tumor suppressor gene initially described as a low-penetrance cancer gene: a truncated Trp149Stop (MUT) polymorphism is associated with general familial cancer aggregation and, particularly, high-risk familial breast cancer. DNA hypermethylation has been identified as a mechanism of ARLTS1 expression down-regulation in lung carcinomas and B-cell chronic lymphocytic leukemia. We found that, in the majority of ovarian carcinomas (61.5%) and in a significant proportion of ovarian and breast cancer cell lines (45%), ARLTS1 is strongly down-regulated due to DNA methylation in its promoter region. After ARLTS1 restoration by adenoviral transduction, only the negative TOV-112 and the homozygously mutated (MUT) MCF7 cells, but not the OV-90 cells expressing a normal ARLTS1 product, underwent apoptosis and inhibition of cell growth. Furthermore, ARLTS1 reexpression significantly reduced the tumorigenic potential of TOV-112 in nude mice. On the contrary, the ARLTS1-MUT induced significantly lower levels of apoptosis in infected cells and reduced in vivo tumorigenesis only partially, supporting the hypothesis that Trp149Stop polymorphism is retained in the general population and predisposes to cancer because of a reduction, but not full loss, of normal ARLTS1 function.

The Molecular Pathogenesis of Gastrointestinal Stromal Tumors

Gastrointestinal stromal tumors (GISTs) are clinically diagnosed by positive immunohistochemical staining of KIT, a type III receptor tyrosine kinase. Most GISTs contain gain-of-function, ie, oncogenic mutations in c-KIT or in platelet-derived growth factor receptor-alpha (PDGFR-alpha), which appears to be the major initiating event that drives the pathogenesis for GIST. Furthermore, mutations in either of these genes appear to be required for tumor growth and progression. This scenario can be thought of as "oncogenic addiction" and is one of the major reasons why some GISTs respond significantly to therapies that target these mutant receptors. In addition to mutations in c-KIT or PDGFR-alpha, genomic alterations contribute to disease progression. Moreover, GISTs that harbor different c-KIT or PDGFR-alpha mutations have different molecular signatures at the level of gene expression, which further contributes to the complexity of GIST biology and variable responses to treatment. This article will discuss the molecular basis of pathogenesis and genetic and genomic alterations that contribute to GIST tumorigenesis and disease progression as well as the heterogeneity of this disease.

Prominent Expression of Metalloproteinases in Early Stages of Ovarian Tumorigenesis

The role for matrix metalloproteinases (MMPs) in tumor cells invasion and metastasis is well established, and expression of MMPs is recognized as an indication of tumor cell malignancy. Previous studies suggest that the degradation of the basement membrane is a crucial early step in epithelial transformation and ovarian tumorigenesis. Thus, MMPs may also express and exert a role in preneoplastic lesions of ovarian tissues. We investigated the expression of the major metalloproteinases, gelatinase A, 72 kDa type IV collagenase (MMP-2), and gelatinase B, 92 kDa type IV collagenase (MMP-9), and the presence of basement membrane in ovarian tumors and tissues from prophylactic oophorectomies using immunostaining. MMP expression was also characterized in a panel of ovarian cancer cell lines and several nontumorigenic ovarian surface epithelial primary cells by zymography, Northern, and Western blots. We found, surprisingly, that MMP-2 and MMP-9 are expressed more frequently in early lesions than in established carcinomas. No correlation was found between the expression of MMPs and tumor grades or stages. In preneoplastic lesions, MMP-2 or MMP-9 expression often associates with the absence of basement membrane and morphological alterations. MMP-2 is often expressed in nontumorigenic ovarian surface epithelial cells but reduced or absent in cancer cells. Thus, we conclude that MMPs expression does not correlate with the malignancy of ovarian epithelial cells as generally thought. Rather, increased metalloproteinase expression is an early event in ovarian tumorigenesis and associates with the loss of epithelial basement membrane and morphological transformation. We propose that the increased MMP activity is an etiological factor for ovarian cancer risk. We found that MMPs expression does not correlate with the malignancy of ovarian epithelial cells as generally thought. Rather, increased metalloproteinase expression is an early event in ovarian tumorigenesis. The finding suggests roles of MMP in tumor initiation in addition to invasion, and may impact on the strategy for use of MMP inhibitors in cancer prevention.

Nestin is Expressed in the Basal/myoepithelial Layer of the Mammary Gland and is a Selective Marker of Basal Epithelial Breast Tumors

Transcriptional profiling has identified five breast cancer subtypes, of which the basal epithelial is most aggressive and correlates with poor prognosis. These tumors display a high degree of cellular heterogeneity and lack established molecular targets, such as estrogen receptor-alpha, progesterone receptor, and Her2 overexpression, indicating a need for definitive diagnostic markers. We present evidence that nestin, a previously described marker of regenerative cells in diverse tissues, is expressed in the regenerative compartment of the normal human mammary gland. Colocalization studies indicate two distinct populations of mammary epithelia that express nestin: one expressing cytokeratin 14 (CK14) and DeltaN-p63 and another expressing desmin. Immunohistochemical analysis indicates that DeltaN-p63 and nestin are coordinately expressed during pregnancy in the murine mammary gland. In the embryonal carcinoma cell line NT2/D1, ectopic DeltaN-p63-alpha disrupts retinoic acid-induced differentiation, thereby preserving expression of nestin; however, small interfering RNA-mediated ablation of nestin is insufficient to promote differentiation, indicating that whereas nestin may identify cells within the regenerative compartment of the mammary gland, it is insufficient to block differentiation and preserve replicative capacity. Immunohistochemical analysis of basal epithelial breast tumors, including those shown to carry BRCA1 mutations, indicates robust expression of nestin and CK14, punctate expression of p63, and low to undetectable levels of desmin expression. Nestin was not detected in other breast cancer subtypes, indicating selectivity for basal epithelial breast tumors. These studies identify nestin as a selective marker of the basal breast cancer phenotype, which displays features of mammary progenitors.

A Phase II and Pharmacodynamic Study of Gefitinib in Patients with Refractory or Recurrent Epithelial Ovarian Cancer

The primary objective of this study was to evaluate the biochemical effects of gefitinib on its target signal-transduction pathways in patients with recurrent epithelial ovarian cancer (EOC). The secondary objectives included assessing clinical activity and toxicity and determining the association between biochemical and clinical outcomes.

Large Genomic Rearrangement in BRCA1 and BRCA2 and Clinical Characteristics of Men with Breast Cancer in the United States

Male breast cancer has been linked extensively to mutations of BRCA2 and, to a lesser extent, BRCA1. The aim of this study was to perform a comprehensive analysis of point mutations and genomic rearrangements in the BRCA1 and BRCA2 genes in 41 men with breast cancer.

AURKA F31I Polymorphism and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers: a Consortium of Investigators of Modifiers of BRCA1/2 Study

The AURKA oncogene is associated with abnormal chromosome segregation and aneuploidy and predisposition to cancer. Amplification of AURKA has been detected at higher frequency in tumors from BRCA1 and BRCA2 mutation carriers than in sporadic breast tumors, suggesting that overexpression of AURKA and inactivation of BRCA1 and BRCA2 cooperate during tumor development and progression. The F31I polymorphism in AURKA has been associated with breast cancer risk in the homozygous state in prior studies. We evaluated whether the AURKA F31I polymorphism modifies breast cancer risk in BRCA1 and BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2. Consortium of Investigators of Modifiers of BRCA1/2 was established to provide sufficient statistical power through increased numbers of mutation carriers to identify polymorphisms that act as modifiers of cancer risk and can refine breast cancer risk estimates in BRCA1 and BRCA2 mutation carriers. A total of 4,935 BRCA1 and 2,241 BRCA2 mutation carriers and 11 individuals carrying both BRCA1 and BRCA2 mutations was genotyped for F31I. Overall, homozygosity for the 31I allele was not significantly associated with breast cancer risk in BRCA1 and BRCA2 carriers combined [hazard ratio (HR), 0.91; 95% confidence interval (95% CI), 0.77-1.06]. Similarly, no significant association was seen in BRCA1 (HR, 0.90; 95% CI, 0.75-1.08) or BRCA2 carriers (HR, 0.93; 95% CI, 0.67-1.29) or when assessing the modifying effects of either bilateral prophylactic oophorectomy or menopausal status of BRCA1 and BRCA2 carriers. In summary, the F31I polymorphism in AURKA is not associated with a modified risk of breast cancer in BRCA1 and BRCA2 carriers.

Increased Expression of the Pro-protein Convertase Furin Predicts Decreased Survival in Ovarian Cancer

Proprotein convertases (PCs) are serine proteases that after restricted proteolysis activate many proteins that play a crucial role in cancer such as metalloproteinases, growth factors and growth factor receptors, adhesion molecules, and angiogenic factors. Although the expression of several PCs is increased in many tumors, their expression in primary ovarian tumors has not been studied in detail. We sought to determine if there was an association between the expression of the ubiquitously expressed PCs, furin, PACE-4, PC-5 and PC-7, and ovarian tumor progression.

Expression of Epiregulin and Amphiregulin and K-ras Mutation Status Predict Disease Control in Metastatic Colorectal Cancer Patients Treated with Cetuximab

The antiepidermal growth factor receptor (EGFR) antibody cetuximab shows activity in multiple epithelial tumor types; however, responses are seen in only a subset of patients. This study was conducted to identify markers that are associated with disease control in patients treated with cetuximab.

Genetic and Functional Analysis of CHEK2 (CHK2) Variants in Multiethnic Cohorts

The CHEK2-1100delC mutation is recurrent in the population and is a moderate risk factor for breast cancer. To identify additional CHEK2 mutations potentially contributing to breast cancer susceptibility, we sequenced 248 cases with early-onset disease; functionally characterized new variants and conducted a population-based case-control analysis to evaluate their contribution to breast cancer risk. We identified 1 additional null mutation and 5 missense variants in the germline of cancer patients. In vitro, the CHEK2-H143Y variant resulted in gross protein destabilization, while others had variable suppression of in vitro kinase activity using BRCA1 as a substrate. The germline CHEK2-1100delC mutation was present among 8/1,646 (0.5%) sporadic, 2/400 (0.5%) early-onset and 3/302 (1%) familial breast cancer cases, but undetectable amongst 2,105 multiethnic controls, including 633 from the US. CHEK2-positive breast cancer families also carried a deleterious BRCA1 mutation. 1100delC appears to be the only recurrent CHEK2 mutation associated with a potentially significant contribution to breast cancer risk in the general population. Another recurrent mutation with attenuated in vitro function, CHEK2-P85L, is not associated with increased breast cancer susceptibility, but exhibits a striking difference in frequency across populations with different ancestral histories. These observations illustrate the importance of genotyping ethnically diverse groups when assessing the impact of low-penetrance susceptibility alleles on population risk. Our findings highlight the notion that clinical testing for rare missense mutations within CHEK2 may have limited value in predicting breast cancer risk, but that testing for the 1100delC variant may be valuable in phenotypically- and geographically-selected populations.

MicroRNA-34b and MicroRNA-34c Are Targets of P53 and Cooperate in Control of Cell Proliferation and Adhesion-independent Growth

MicroRNAs (miRNA) are a recently discovered class of noncoding RNAs that negatively regulate gene expression. Recent evidence indicates that miRNAs may play an important role in cancer. However, the mechanism of their deregulation in neoplastic transformation has only begun to be understood. To elucidate the role of tumor suppressor p53 in regulation of miRNAs, we have analyzed changes in miRNA microarray expression profile immediately after conditional inactivation of p53 in primary mouse ovarian surface epithelium cells. Among the most significantly affected miRNAs were miR-34b and miR-34c, which were down-regulated 12-fold according to quantitative reverse transcription-PCR analysis. Computational promoter analysis of the mir-34b/mir-34c locus identified the presence of evolutionarily conserved p53 binding sites approximately 3 kb upstream of the miRNA coding sequence. Consistent with evolutionary conservation, mir-34b/mir-34c were also down-regulated in p53-null human ovarian carcinoma cells. Furthermore, as expected from p53 binding to the mir-34b/c promoter, doxorubicin treatment of wild-type, but not p53-deficient, cells resulted in an increase of mir-34b/mir-34c expression. Importantly, miR-34b and miR-34c cooperate in suppressing proliferation and soft-agar colony formation of neoplastic epithelial ovarian cells, in agreement with the partially overlapping spectrum of their predicted targets. Taken together, these results show the existence of a novel mechanism by which p53 suppresses such critical components of neoplastic growth as cell proliferation and adhesion-independent colony formation.

Prostate Cancer Risk Assessment Program: a 10-year Update of Cancer Detection

Guidelines for screening men at high risk for prostate cancer remain under investigation. We report our 10-year cancer detection data from the Prostate Cancer Risk Assessment Program, a longitudinal screening program for men at high risk.

Liquid Chromatography Mass Spectrometry for Quantifying Plasma Lysophospholipids: Potential Biomarkers for Cancer Diagnosis

Cancer is a complex disease with many genetic and epigenetic aberrations that result in development of tumorigenic phenotypes. While many factors contribute to the etiology of cancer, emerging data implicate lysophospholipids acting through specific cell-surface, and potentially intracellular, receptors in acquiring the transformed phenotype propagated during disease. Lysophospholipids bind to and activate specific cell-surface G protein-coupled receptors (GPCRs) that initiate cell growth, proliferation, and survival pathways, and show altered expression in cancer cells. In addition, a number of enzymes that increase lysophospholipid production are elevated in particular cell lineages and cancer patients' cells, whereas in a subset of patients, the enzymes degrading lysophospholipids are decreased. Thus, ideal conditions are established to increase lysophospholipids in the tumor microenvironment. Indeed, ascites from ovarian cancer patients, which reflects both the tumor environment and a tumor-conditioned media, exhibits markedly elevated levels of specific lysophospholipids as well as one of the enzymes involved in production of lysophospholipids: autotaxin (ATX). The potential sources of lysophospholipids in the tumor microenvironment include tumor cells and stroma, such as mesothelial cells, as well as inflammatory cells and platelets activated by the proinflammatory tumor environment. If lysophospholipids diffuse from the tumor microenvironment into the bloodstream and persist, they have the potential to serve as early diagnostic markers as well as potential monitors of tumor response to therapy. Many scientific and technical challenges need to be resolved to determine whether lysophospholipids or the enzymes producing lysophospholipids alone or in combination with other markers have the potential to contribute to early diagnosis. Breast cancer is the most frequently diagnosed cancer among women. Mammography is associated with morbidity and has a high false positive and false negative rate. Thus, there is a critical need for biomarkers that can contribute to reduced false positive and false negative diagnoses, and to identify, stage, and/or predict prognosis of this disease to improve patient management. Here we describe a technical approach that can be applied to human blood plasma to measure the concentration of growth factor-like lysophospholipids contained in circulation. Using liquid chromatography mass spectrometry (LC/MS/MS), we quantified the amount of lysophosphatidic acid (16:0, 18:0, 18:1, 18:2, and 20:4), lysophosphatidylinositol (18:0), lysophosphatidylserine (18:1), lysophosphatidylcholine (16:0, 18:0, 18:1, 18:2, and 20:4), sphingosine-1-phosphate, and sphingosylphosphorylcholine species from human female plasma samples with malignant, benign, or no breast tumor present. Other methods described here include handling patient blood samples, lipid extraction, and factors that affect lysophospholipid production and loss during sample handling.

Ovca1, a Candidate Gene of the Genetic Modifier of Tp53, Mop2, Affects Mouse Embryonic Lethality

In this study, we show genetic modifier genes of Tp53 that can exacerbate embryonic abnormalities. Using a mouse model in which CE/J mice were crossed with the Tp53-null 129/Sv (129-Trp53(tm1 Tyj)) mice, a subset of Tp53+/- and -/- male and female embryos died during gestation. Our hypothesis, based on the genotypes of survivors, is that two genetic modifiers and a Tp53 null allele lead to an increase in embryonic lethality. We previously identified a recessive modifier (Mop1) from CE/J mice on chromosome 11 centromeric to Tp53. We have uncovered a dominant modifier (Mop2) from 129/Sv mice telomeric to Tp53. We discovered a polymorphic change (321P-->321S) of Ovca1 within the Mop2 locus of CE/J mice. This polymorphism increased both mRNA and protein levels of OVCA1 in various tissues. CE/J primary cells cultured from different tissues proliferated more rapidly than 129/Sv cells. In addition, CE/J cells cycled while 129/Sv cells had a higher arrest in the G1 phase. Transfection of Ovca1 containing the 321P polymorphism into CE/J cells caused a higher G1 arrest. The pattern of OVCA1 expression also changed from being diffuse throughout the cytoplasm in 129/Sv cells to being punctuate in the cytoplasm of CE/J cells. Tp53+/- abnormal embryos had more proliferating cells than normal embryos, but no obvious difference in differentiated neuronal cells. Tp53-/- small embryos had less differentiated neuronal cells and proliferating cells than normal embryos. Thus, a polymorphism of Ovca1, combined with Mop1, genetically modifies embryonic lethality in Tp53 deficient mice.

Allelic Imbalance in BRCA1 and BRCA2 Gene Expression is Associated with an Increased Breast Cancer Risk

The contribution of BRCA1 and BRCA2 to familial and non-familial forms of breast cancer has been difficult to accurately estimate because of the myriad of potential genetic and epigenetic mechanisms that can ultimately influence their expression and involvement in cellular activities. As one of these potential mechanisms, we investigated whether allelic imbalance (AI) of BRCA1 or BRCA2 expression was associated with an increased risk of developing breast cancer. By developing a quantitative approach utilizing allele-specific real-time PCR, we first evaluated AI caused by nonsense-mediated mRNA decay in patients with frameshift mutations in BRCA1 and BRCA2. We next measured AI for BRCA1 and BRCA2 in lymphocytes from three groups: familial breast cancer patients, non-familial breast cancer patients and age-matched cancer-free females. The AI ratios of BRCA1, but not BRCA2, in the lymphocytes from familial breast cancer patients were found to be significantly increased as compared to cancer-free women (BRCA1: 0.424 versus 0.211, P = 0.00001; BRCA2: 0.206 versus 0.172, P = 0.38). Similarly, the AI ratios were greater for BRCA1 and BRCA2 in the lymphocytes of non-familial breast cancer cases versus controls (BRCA1: 0.353, P = 0.002; BRCA2: 0.267, P = 0.03). Furthermore, the distribution of under-expressed alleles between cancer-free controls and familial cases was significantly different for both BRCA1 and BRCA2 gene expression (P < 0.02 and P < 0.02, respectively). In conclusion, we have found that AI affecting BRCA1 and to a lesser extent BRCA2 may contribute to both familial and non-familial forms of breast cancer.

Promoter Hypermethylation of the PALB2 Susceptibility Gene in Inherited and Sporadic Breast and Ovarian Cancer

The partner and localizer of BRCA2 (PALB2) gene was recently identified as a BRCA2-interacting protein and subsequently shown to be a Fanconi anemia gene (FANCN). Disease-associated point mutations resulting in protein truncation have been found in BRCA1/2 mutation-negative breast cancer families identifying PALB2 as a susceptibility gene for breast cancer. Aberrant promoter hypermethylation is a mechanism of inactivation of many tumor suppressor genes, including BRCA1 and p16(INK4a), in breast and ovarian cancer. We therefore investigated the methylation status of a 1512 bp typical CpG island located in the promoter and exon 1 region of the PALB2 gene in 130 sporadic and familial breast and ovarian primary tumors, 9 cell lines, and 10 normal cell specimens. We found two primary breast tumors from BRCA2 mutation carriers, four sporadic primary breast tumors, and four sporadic primary ovarian tumors showed hypermethylation of the core promoter region of PALB2. All 10 normal tissue DNA had an unmethylated PALB2 promoter region. Quantitative real-time reverse transcription-PCR showed PALB2 expression to be reduced 28-fold in primary breast tumor with PALB2 promoter hypermethylation compared with matched normal breast tissue RNA. Aberrant promoter hypermethylation of PALB2 is more frequent than the reported level of PALB2 point mutations in breast tumors from BRCA1/2-negative families and is similar to the frequency of BRCA1 hypermethylation in inherited and sporadic breast and ovarian cancers.

The Differential Role of L1 in Ovarian Carcinoma and Normal Ovarian Surface Epithelium

Epithelial ovarian carcinoma (EOC) arises from the ovarian surface epithelium (OSE), a monolayer of poorly differentiated epithelial cells that lines the ovary. The molecular mechanisms underlying EOC invasion into the surrounding stroma and dissemination to the peritoneum and to retroperitoneal lymph nodes are still unclear. Here, we analyzed the expression and the functional role of the cell adhesion molecule L1 during EOC development. In patient-derived samples, L1 was expressed both in OSE and in a subset of EOC, in the latter being mostly restricted to the invasive areas of the tumors. The expression of L1 correlated significantly with poor outcome and with unfavorable clinicopathologic features of the disease. The peculiar expression pattern of L1 in normal OSE and invasive EOC raised the possibility that this adhesion molecule serves a different function in nontransformed versus neoplastic ovarian epithelial cells. Indeed, we showed that in OSE cells L1 supports cell-cell adhesion and enhances apoptosis, whereas it has no effect on cell proliferation and invasion. In contrast, L1 inhibits cell-cell adhesion and apoptosis in ovarian carcinoma cells, where it promotes malignancy-related properties, such as cell proliferation, Erk1/2-dependent and phosphoinositide 3-kinase-dependent invasion, and transendothelial migration. Interestingly, a crosstalk with the fibroblast growth factor receptor signaling is implicated in the promalignant function of L1 in tumor cells. Our findings point to L1 as an EOC biomarker correlating with poor prognosis, and highlight a switch in L1 function associated to the neoplastic transformation of ovarian epithelial cells, thus implicating L1 as a potential therapeutic target.

Perceived Stress is Associated with Impaired T-cell Response to HPV16 in Women with Cervical Dysplasia

Infection with high-risk subtypes of human papillomavirus (HPV) is a central factor in the development of cervical neoplasia. Cell-mediated immunity against HPV16 plays an important role in the resolution of HPV infection and in controlling cervical disease progression. Research suggests that stress is associated with cervical disease progression, but few studies have examined the biological mechanisms that may be driving this association.

Common Breast Cancer-predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.

Ovarian Normal and Tumor-associated Fibroblasts Retain in Vivo Stromal Characteristics in a 3-D Matrix-dependent Manner

Due to a lack of experimental systems, little is known about ovarian stroma. Here, we introduce an in vivo-like 3-D system of mesenchymal stromal progression during ovarian tumorigenesis to support the study of stroma permissiveness in human ovarian neoplasias.

Insulin-like Growth Factor 1 Receptor is a Potential Therapeutic Target for Gastrointestinal Stromal Tumors

A subset of gastrointestinal stromal tumors (GISTs) lack gain-of-function mutations in c-KIT and PDGFRalpha. These so-called wild-type (WT) GISTs tend to be less responsive to imatinib-based therapies and have a poor prognosis. We identified amplification of IGF1R in a SNP analysis of GIST and thus studied its potential as a therapeutic target in WT and mutant GIST. Expression of IGF1R and downstream effectors in clinical GIST samples was examined by using immunoblots and immunohistochemistry. The roles of IGF1R signaling in GIST and viability were analyzed by using NVP-AEW541, an inhibitor of IGF1R, alone and in combination with imatinib, or via siRNA silencing of IGF1R. IGF1R was strongly overexpressed, and IGF1R amplification was detected at a significantly higher frequency in WT GISTs, including a pediatric WT GIST, compared with mutant GISTs (P = 0.0173 and P = 0.0163, respectively). Inhibition of IGF1R activity in vitro with NVP-AEW541 or down-regulation of expression with siIGF1R led to cytotoxicity and induced apoptosis in GIST cell lines via AKT and MAPK signaling. Combination of NVP-AEW541 and imatinib in GIST cell lines induced a strong cytotoxicity response. Our results reveal that IGF1R is amplified and the protein is overexpressed in WT and pediatric GISTs. We also demonstrate that the aberrant expression of IGF1R may be associated with oncogenesis in WT GISTs and suggest an alternative and/or complementary therapeutic regimen in the clinical management of all GISTs, especially in a subset of tumors that respond less favorably to imatinib-based therapy.

The Insulin-like Growth Factor System As a Potential Therapeutic Target in Gastrointestinal Stromal Tumors

The majority of gastrointestinal stromal tumors (GISTs) are characterized by oncogenic gain-of-function mutations in the receptor tyrosine kinase (RTK) c-KIT with a minority in PDGFRalpha. Therapy for GISTs has been revolutionized by the use of the selective tyrosine kinase inhibitor imatinib mesylate (IM). For the subset (approximately 10-15%) of GISTs that lack oncogenic mutations in these receptors, the genetic changes driving tumorigenesis are unknown. We recently reported that the gene encoding the insulin-like growth factor 1 receptor (IGF-1R) is amplified in a subset of GISTs, and the IGF-1R protein is overexpressed in wild-type and pediatric GISTs. In this report we present a more complete picture of the involvement of components of the insulin-like growth factor-signaling pathway in the pathogenesis of GISTs. We also discuss how the IGF pathway may provide additional molecular targets for the treatment of GISTs that respond poorly to IM therapy.

Molecular Mechanisms of Action of Imatinib Mesylate in Human Ovarian Cancer: a Proteomic Analysis

Imatinib mesylate (Gleevec, Novartis, Basel, Switzerland) is a small-molecule tyrosine kinase inhibitor with activity against ABL, BCR-ABL, c-KIT, and PDGFR alpha. Several clinical trials have evaluated the efficacy and safety of imatinib in patients with ovarian carcinoma who have persistent or recurrent disease following front-line platinum/taxane based chemotherapy. However, there is limited pre-clinical and clinical data on the molecular targets and action of imatinib in ovarian cancer.

BRCA1 and BRCA2 Mutation Carriers in the Breast Cancer Family Registry: an Open Resource for Collaborative Research

The Breast Cancer Family Registry is a resource for interdisciplinary and translational studies of the genetic epidemiology of breast cancer. This resource is available to researchers worldwide for collaborative studies. Herein, we report the results of testing for germline mutations in BRCA1 and BRCA2. We have tested 4,531 probands for mutations in BRCA1 and 4,084 in BRCA2. Deleterious mutations in BRCA1 and BRCA2 were identified for 9.8% of probands tested [233/4,531 (5.1%) for BRCA1 and 193/4,084 (4.7%) for BRCA2]. Of 1,385 Ashkenazi Jewish women tested for only the three founder mutations, 17.4% carried a deleterious mutation. In total, from the proband and subsequent family testing, 1,360 female mutation carriers (788 in BRCA1, 566 in BRCA2, 6 in both BRCA1 and BRCA2) have been identified. The value of the resource has been greatly enhanced by determining the germline BRCA1 and BRCA2 mutation statuses of nearly 6,000 probands.

Standard Operating Procedures for Serum and Plasma Collection: Early Detection Research Network Consensus Statement Standard Operating Procedure Integration Working Group

Specimen collection is an integral component of clinical research. Specimens from subjects with various stages of cancers or other conditions, as well as those without disease, are critical tools in the hunt for biomarkers, predictors, or tests that will detect serious diseases earlier or more readily than currently possible. Analytic methodologies evolve quickly. Access to high-quality specimens, collected and handled in standardized ways that minimize potential bias or confounding factors, is key to the "bench to bedside" aim of translational research. It is essential that standard operating procedures, "the how" of creating the repositories, be defined prospectively when designing clinical trials. Small differences in the processing or handling of a specimen can have dramatic effects in analytical reliability and reproducibility, especially when multiplex methods are used. A representative working group, Standard Operating Procedures Internal Working Group (SOPIWG), comprised of members from across Early Detection Research Network (EDRN) was formed to develop standard operating procedures (SOPs) for various types of specimens collected and managed for our biomarker discovery and validation work. This report presents our consensus on SOPs for the collection, processing, handling, and storage of serum and plasma for biomarker discovery and validation.

No Evidence That GATA3 Rs570613 SNP Modifies Breast Cancer Risk

GATA-binding protein 3 (GATA3) is a transcription factor that is crucial to mammary gland morphogenesis and differentiation of progenitor cells, and has been suggested to have a tumor suppressor function. The rs570613 single nucleotide polymorphism (SNP) in intron 4 of GATA3 was previously found to be associated with a reduction in breast cancer risk in the Cancer Genetic Markers of Susceptibility project and in pooled analysis of two case-control studies from Norway and Poland (P (trend) = 0.004), with some evidence for a stronger association with estrogen receptor (ER) negative tumours [Garcia-Closas M et al. (2007) Cancer Epidemiol Biomarkers Prev 16:2269-2275]. We genotyped GATA3 rs570613 in 6,388 cases and 4,995 controls from the Breast Cancer Association Consortium (BCAC) and 5,617 BRCA1 and BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). We found no association between this SNP and breast cancer risk in BCAC cases overall (OR(per-allele) = 1.00, 95% CI 0.94-1.05), in ER negative BCAC cases (OR(per-allele) = 1.02, 95% CI 0.91-1.13), in BRCA1 mutation carriers RR(per-allele) = 0.99, 95% CI 0.90-1.09) or BRCA2 mutation carriers (RR(per-allele) = 0.93, 95% CI 0.80-1.07). We conclude that there is no evidence that either GATA3 rs570613, or any variant in strong linkage disequilibrium with it, is associated with breast cancer risk in women.

Phase II Trial of Single Agent Cetuximab in Patients with Persistent or Recurrent Epithelial Ovarian or Primary Peritoneal Carcinoma with the Potential for Dose Escalation to Rash

Determine if cetuximab dose escalation to induce grade 2 rash correlates with anti-tumor activity and if sera-based markers could predict likelihood of response.

Hereditary Ovarian Carcinoma: Heterogeneity, Molecular Genetics, Pathology, and Management

Hereditary ovarian cancer accounts for at least 5% of the estimated 22,000 new cases of this disease during 2009. During this same time, over 15,000 will die from malignancy ascribed to ovarian origin. The bulk of these hereditary cases fits the hereditary breast-ovarian cancer syndrome, while virtually all of the remainder will be consonant with the Lynch syndrome, disorders which are autosomal dominantly inherited. Advances in molecular genetics have led to the identification of BRCA1 and BRCA2 gene mutations which predispose to the hereditary breast-ovarian cancer syndrome, and mutations in mismatch repair genes, the most common of which are MSH2 and MLH1, which predispose to Lynch syndrome. These discoveries enable relatively certain diagnosis, limited only by their variable penetrance, so that identification of mutation carriers through a comprehensive cancer family history might be possible. This paper reviews the subject of hereditary ovarian cancer, with particular attention to its molecular genetic basis, its pathology, and its phenotypic/genotypic heterogeneity.

Repertoire of MicroRNAs in Epithelial Ovarian Cancer As Determined by Next Generation Sequencing of Small RNA CDNA Libraries

MicroRNAs (miRNAs) are small regulatory RNAs that are implicated in cancer pathogenesis and have recently shown promise as blood-based biomarkers for cancer detection. Epithelial ovarian cancer is a deadly disease for which improved outcomes could be achieved by successful early detection and enhanced understanding of molecular pathogenesis that leads to improved therapies. A critical step toward these goals is to establish a comprehensive view of miRNAs expressed in epithelial ovarian cancer tissues as well as in normal ovarian surface epithelial cells.

Common Variation in KITLG and at 5q31.3 Predisposes to Testicular Germ Cell Cancer

Testicular germ cell tumors (TGCT) have been expected to have a strong underlying genetic component. We conducted a genome-wide scan among 277 TGCT cases and 919 controls and found that seven markers at 12p22 within KITLG (c-KIT ligand) reached genome-wide significance (P < 5.0 x 10(-8) in discovery). In independent replication, TGCT risk was increased threefold per copy of the major allele at rs3782179 and rs4474514 (OR = 3.08, 95% CI = 2.29-4.13; OR = 3.07, 95% CI = 2.29-4.13, respectively). We found associations with rs4324715 and rs6897876 at 5q31.3 near SPRY4 (sprouty 4; P < 5.0 x 10(-6) in discovery). In independent replication, risk of TGCT was increased nearly 40% per copy of the major allele (OR = 1.37, 95% CI = 1.14-1.64; OR = 1.39, 95% CI = 1.16-1.66, respectively). All of the genotypes were associated with both seminoma and nonseminoma TGCT subtypes. These results demonstrate that common genetic variants affect TGCT risk and implicate KITLG and SPRY4 as genes involved in TGCT susceptibility.

Biological Significance of Prolactin in Gynecologic Cancers

There is increasing evidence that prolactin (PRL), a hormone/cytokine, plays a role in breast, prostate, and colorectal cancers via local production or accumulation. Elevated levels of serum PRL in ovarian and endometrial cancers have been reported, indicating a potential role for PRL in endometrial and ovarian carcinogenesis. In this study, we show that serum PRL levels are significantly elevated in women with a strong family history of ovarian cancer. We show dramatically increased expression of PRL receptor in ovarian and endometrial tumors as well as in endometrial hyperplasia, signifying the importance of PRL signaling in malignant and premalignant conditions. PRL mRNA was expressed in ovarian and endometrial tumors, indicating the presence of an autocrine loop. PRL potently induced proliferation in several ovarian and endometrial cancer cell lines. Binding of PRL to its receptor was followed by rapid phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, mitogen-activated protein kinase/ERK kinase 1, signal transducer and activator of transcription 3, CREB, ATF-2, and p53 and activation of 37 transcription factors in ovarian and endometrial carcinoma cells. PRL also activated Ras oncogene in these cells. When human immortalized normal ovarian epithelial cells were chronically exposed to PRL, a malignant transformation occurred manifested by the acquired ability of transformed cells to form clones, grow in soft agar, and form tumors in severe combined immunodeficient-beige mice. Transformation efficiency was diminished by a Ras inhibitor, providing proof that PRL-induced transformation uses the Ras pathway. In summary, we present findings that indicate an important role for PRL in ovarian and endometrial tumorigenesis. PRL may represent a risk factor for ovarian and endometrial cancers.

Clinical and Molecular Characteristics of Gastrointestinal Stromal Tumors in the Pediatric and Young Adult Population

Gastrointestinal stromal tumors (GISTs) typically occur late in life; however, there also are reports of pediatric and young adult patients. This rare subset of GISTs has clinicopathologic and molecular features distinct from their adult counterparts. Most pediatric GIST patients are female and often present with multifocal tumors that are epithelioid in nature. Although these young patients often have metastatic disease, it progresses slowly. Most pediatric GISTs lack the gain-of-function mutation in KIT or PDGFRA commonly found in adult cases. Expression profiling and genomic studies of pediatric GISTs show distinct molecular signatures, suggesting a unique origin as compared with adult GISTs. We and others have shown that the insulin-like growth factor 1 receptor may have a prominent role in driving KIT/PDGFRA mutation-negative adult and pediatric GISTs, and clinical trials are currently being designed to exploit these types of discoveries.

High Density DNA Array Analysis Reveals Distinct Genomic Profiles in a Subset of Gastrointestinal Stromal Tumors

Gastrointestinal stromal tumors (GISTs) generally harbor activating mutations in KIT or platelet-derived growth facter receptor (PDGFRA). Mutations in these receptor tyrosine kinases lead to dysregulation of downstream signaling pathways that contribute to GIST pathogenesis. GISTs with KIT or PDGFRA mutations also undergo secondary cytogenetic alterations that may indicate the involvement of additional genes important in tumor progression. Approximately 10-15% of adult and 85% of pediatric GISTs do not have mutations in KIT or in PDGFRA. Most mutant adult GISTs display large-scale genomic alterations, but little is known about the mutation-negative tumors. Using genome-wide DNA arrays, we investigated genomic imbalances in a set of 31 GISTs, including 10 KIT/PDGFRA mutation-negative tumors from nine adults and one pediatric case and 21 mutant tumors. Although all 21 mutant GISTs exhibited multiple copy number aberrations, notably losses, eight of the 10 KIT/PDGFRA mutation-negative GISTs exhibited few or no genomic alterations. One KIT/PDGFRA mutation-negative tumor exhibiting numerous genomic changes was found to harbor an alternate activating mutation, in the serine-threonine kinase BRAF. The only other mutation-negative GIST with significant chromosomal imbalances was a recurrent metastatic tumor found to harbor a homozygous deletion in chromosome arm 9p. Similar findings in several KIT-mutant GISTs identified a minimal overlapping region of deletion of approximately 0.28 Mbp in 9p21.3 that includes only the CDKN2A/2B genes, which encode inhibitors of cell-cycle kinases. These results suggest that GISTs without activating kinase mutations, whether pediatric or adult, generally exhibit a much lower level of cytogenetic progression than that observed in mutant GISTs.

Loss of GATA4 and GATA6 Expression Specifies Ovarian Cancer Histological Subtypes and Precedes Neoplastic Transformation of Ovarian Surface Epithelia

The family of zinc finger-containing GATA transcription factors plays critical roles in cell lineage specification during early embryonic development and organ formation. GATA4 and GATA6 were found to be frequently lost in ovarian cancer, and the loss is proposed to account for dedifferentiation of the cancer cells.

Common Variants in LSP1, 2q35 and 8q24 and Breast Cancer Risk for BRCA1 and BRCA2 Mutation Carriers

Genome-wide association studies of breast cancer have identified multiple single nucleotide polymorphisms (SNPs) that are associated with increased breast cancer risks in the general population. In a previous study, we demonstrated that the minor alleles at three of these SNPs, in FGFR2, TNRC9 and MAP3K1, also confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. Three additional SNPs rs3817198 at LSP1, rs13387042 at 2q35 and rs13281615 at 8q24 have since been reported to be associated with breast cancer in the general population, and in this study we evaluated their association with breast cancer risk in 9442 BRCA1 and 5665 BRCA2 mutation carriers from 33 study centres. The minor allele of rs3817198 was associated with increased breast cancer risk only for BRCA2 mutation carriers [hazard ratio (HR) = 1.16, 95% CI: 1.07-1.25, P-trend = 2.8 x 10(-4)]. The best fit for the association of SNP rs13387042 at 2q35 with breast cancer risk was a dominant model for both BRCA1 and BRCA2 mutation carriers (BRCA1: HR = 1.14, 95% CI: 1.04-1.25, P = 0.0047; BRCA2: HR = 1.18 95% CI: 1.04-1.33, P = 0.0079). SNP rs13281615 at 8q24 was not associated with breast cancer for either BRCA1 or BRCA2 mutation carriers, but the estimated association for BRCA2 mutation carriers (per-allele HR = 1.06, 95% CI: 0.98-1.14) was consistent with odds ratio estimates derived from population-based case-control studies. The LSP1 and 2q35 SNPs appear to interact multiplicatively on breast cancer risk for BRCA2 mutation carriers. There was no evidence that the associations vary by mutation type depending on whether the mutated protein is predicted to be stable or not.

Gene Expression Signatures and Response to Imatinib Mesylate in Gastrointestinal Stromal Tumor

Despite initial efficacy of imatinib mesylate in most gastrointestinal stromal tumor (GIST) patients, many experience primary/secondary drug resistance. Therefore, clinical management of GIST may benefit from further molecular characterization of tumors before and after imatinib mesylate treatment. As part of a recent phase II trial of neoadjuvant/adjuvant imatinib mesylate treatment for advanced primary and recurrent operable GISTs (Radiation Therapy Oncology Group S0132), gene expression profiling using oligonucleotide microarrays was done on tumor samples obtained before and after imatinib mesylate therapy. Patients were classified according to changes in tumor size after treatment based on computed tomography scan measurements. Gene profiling data were evaluated with Statistical Analysis of Microarrays to identify differentially expressed genes (in pretreatment GIST samples). Based on Statistical Analysis of Microarrays [False Discovery Rate (FDR), 10%], 38 genes were expressed at significantly lower levels in the pretreatment biopsy samples from tumors that significantly responded to 8 to 12 weeks of imatinib mesylate, that is, >25% tumor reduction. Eighteen of these genes encoded Krüppel-associated box (KRAB) domain containing zinc finger (ZNF) transcriptional repressors. Importantly, 10 KRAB-ZNF genes mapped to a single locus on chromosome 19p, and a subset predicted likely response to imatinib mesylate-based therapy in a naïve panel of GIST. Furthermore, we found that modifying expression of genes within this predictive signature can enhance the sensitivity of GIST cells to imatinib mesylate. Using clinical pretreatment biopsy samples from a prospective neoadjuvant phase II trial, we have identified a gene signature that includes KRAB-ZNF 91 subfamily members that may be both predictive of and functionally associated with likely response to short-term imatinib mesylate treatment.

Development and Characterization of Reference Materials for MTHFR, SERPINA1, RET, BRCA1, and BRCA2 Genetic Testing

Well-characterized reference materials (RMs) are integral in maintaining clinical laboratory quality assurance for genetic testing. These RMs can be used for quality control, monitoring of test performance, test validation, and proficiency testing of DNA-based genetic tests. To address the need for such materials, the Centers for Disease Control and Prevention established the Genetic Testing Reference Material Coordination Program (GeT-RM), which works with the genetics community to improve public availability of characterized RMs for genetic testing. To date, the GeT-RM program has coordinated the characterization of publicly available genomic DNA RMs for a number of disorders, including cystic fibrosis, Huntington disease, fragile X, and several genetic conditions with relatively high prevalence in the Ashkenazi Jewish population. Genotypic information about a number of other cell lines has been collected and is also available. The present study includes the development and commutability/genotype characterization of 10 DNA samples for clinically relevant mutations or sequence variants in the following genes: MTHFR; SERPINA1; RET; BRCA1; and BRCA2. DNA samples were analyzed by 19 clinical genetic laboratories using a variety of assays and technology platforms. Concordance was 100% for all samples, with no differences observed between laboratories using different methods. All DNA samples are available from Coriell Cell Repositories and characterization information can be found on the GeT-RM website.

Prospective Case-control Study of Serum Mullerian Inhibiting Substance and Breast Cancer Risk

Müllerian inhibiting substance (MIS) is a member of the transforming growth factor beta family of growth and differentiation factors that inhibits elongation and branching of mammary ducts and has been shown to inhibit mammary tumor growth in vitro and in animal models. The objective of this study was to determine whether serum MIS levels are associated with breast cancer risk.

Genetic Variation in Insulin-like Growth Factor Signaling Genes and Breast Cancer Risk Among BRCA1 and BRCA2 Carriers

Women who carry mutations in BRCA1 and BRCA2 have a substantially increased risk of developing breast cancer as compared with the general population. However, risk estimates range from 20 to 80%, suggesting the presence of genetic and/or environmental risk modifiers. Based on extensive in vivo and in vitro studies, one important pathway for breast cancer pathogenesis may be the insulin-like growth factor (IGF) signaling pathway, which regulates both cellular proliferation and apoptosis. BRCA1 has been shown to directly interact with IGF signaling such that variants in this pathway may modify risk of cancer in women carrying BRCA mutations. In this study, we investigate the association of variants in genes involved in IGF signaling and risk of breast cancer in women who carry deleterious BRCA1 and BRCA2 mutations.

Insulin-like Growth Factor Binding Protein-3 Has Dual Effects on Gastrointestinal Stromal Tumor Cell Viability and Sensitivity to the Anti-tumor Effects of Imatinib Mesylate in Vitro

Imatinib mesylate has significantly improved survival and quality of life of patients with gastrointestinal stromal tumors (GISTs). However, the molecular mechanism through which imatinib exerts its anti-tumor effects is not clear. Previously, we found up-regulation of insulin-like growth factor binding protein-3 (IGFBP3) expression in imatinib-responsive GIST cells and tumor samples. Because IGFBP3 regulates cell proliferation and survival and mediates the anti-tumor effects of a number of anti-cancer agents through both IGF-dependent and IGF-independent mechanisms, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 levels in two imatinib-responsive GIST cell lines and observed cell viability after drug treatment.

Detection of Treatment-induced Changes in Signaling Pathways in Gastrointestinal Stromal Tumors Using Transcriptomic Data

Cell signaling plays a central role in the etiology of cancer. Numerous therapeutics in use or under development target signaling proteins; however, off-target effects often limit assignment of positive clinical response to the intended target. As direct measurements of signaling protein activity are not generally feasible during treatment, there is a need for more powerful methods to determine if therapeutics inhibit their targets and when off-target effects occur. We have used the Bayesian Decomposition algorithm and data on transcriptional regulation to create a novel methodology, Differential Expression for Signaling Determination (DESIDE), for inferring signaling activity from microarray measurements. We applied DESIDE to deduce signaling activity in gastrointestinal stromal tumor cell lines treated with the targeted therapeutic imatinib mesylate (Gleevec). We detected the expected reduced activity in the KIT pathway, as well as unexpected changes in the p53 pathway. Pursuing these findings, we have determined that imatinib-induced DNA damage is responsible for the increased activity of p53, identifying a novel off-target activity for this drug. We then used DESIDE on data from resected, post-imatinib treatment tumor samples and identified a pattern in these tumors similar to that at late time points in the cell lines, and this pattern correlated with initial clinical response. The pattern showed increased activity of ETS domain-containing protein Elk-1 and signal transducers and activators of transcription 3 transcription factors, which are associated with the growth of side population cells. DESIDE infers the global reprogramming of signaling networks during treatment, permitting treatment modification that leverages ongoing drug development efforts, which is crucial for personalized medicine.

Regulation of MiR-200 Family MicroRNAs and ZEB Transcription Factors in Ovarian Cancer: Evidence Supporting a Mesothelial-to-epithelial Transition

Our objective was to characterize the expression and function of the miR-200 family of microRNAs (miRNA) in ovarian carcinogenesis.

Subtypes of Familial Breast Tumours Revealed by Expression and Copy Number Profiling

Extensive expression profiling studies have shown that sporadic breast cancer is composed of five clinically relevant molecular subtypes. However, although BRCA1-related tumours are known to be predominantly basal-like, there are few published data on other classes of familial breast tumours. We analysed a cohort of 75 BRCA1, BRCA2 and non-BRCA1/2 breast tumours by gene expression profiling and found that 74% BRCA1 tumours were basal-like, 73% of BRCA2 tumours were luminal A or B, and 52% non-BRCA1/2 tumours were luminal A. Thirty-four tumours were also analysed by single nucleotide polymorphism-comparative genomic hybridization (SNP-CGH) arrays. Copy number data could predict whether a tumour was basal-like or luminal with high accuracy, but could not predict its mutation class. Basal-like BRCA1 and basal-like non-BRCA1 tumours were very similar, and contained the highest number of chromosome aberrations. We identified regions of frequent gain containing potential driver genes in the basal (8q and 12p) and luminal A tumours (1q and 17q). Regions of homozygous loss associated with decreased expression of potential tumour suppressor genes were also detected, including in basal tumours (5q and 9p), and basal and luminal tumours (10q). This study highlights the heterogeneity of familial tumours and the clinical consequences for treatment and prognosis.

Altered Gene Expression in Morphologically Normal Epithelial Cells from Heterozygous Carriers of BRCA1 or BRCA2 Mutations

We hypothesized that cells bearing a single inherited "hit" in a tumor suppressor gene express an altered mRNA repertoire that may identify targets for measures that could delay or even prevent progression to carcinoma. We report here on the transcriptomes of primary breast and ovarian epithelial cells cultured from BRCA1 and BRCA2 mutation carriers and controls. Our comparison analyses identified multiple changes in gene expression, in both tissues for both mutations, which were validated independently by real-time reverse transcription-PCR analysis. Several of the differentially expressed genes had been previously proposed as cancer markers, including mammaglobin in breast cancer and serum amyloid in ovarian cancer. These findings show that heterozygosity for a mutant tumor suppressor gene can alter the expression profiles of phenotypically normal epithelial cells in a gene-specific manner; these detectable effects of "one hit" represent early molecular changes in tumorigenesis that may serve as novel biomarkers of cancer risk and as targets for chemoprevention.

Frequent Downregulation of MiR-34 Family in Human Ovarian Cancers

The miR-34 family is directly transactivated by tumor suppressor p53, which is frequently mutated in human epithelial ovarian cancer (EOC). We hypothesized that miR-34 expression would be decreased in EOC and that reconstituted miR-34 expression might reduce cell proliferation and invasion of EOC cells. Experimental Designs: miR-34 expression was determined by quantitative reverse transcription-PCR and in situ hybridization in a panel of 83 human EOC samples. Functional characterization of miR-34 was accomplished by reconstitution of miR-34 expression in EOC cells with synthetic pre-miR molecules followed by determining changes in proliferation, apoptosis, and invasion.

Nuclear Entry of Activated MAPK is Restricted in Primary Ovarian and Mammary Epithelial Cells

The MAPK/ERK1/2 serine kinases are primary mediators of the Ras mitogenic signaling pathway. Phosphorylation by MEK activates MAPK/ERK in the cytoplasm, and phospho-ERK is thought to enter the nucleus readily to modulate transcription.

LYN is a Mediator of Epithelial-mesenchymal Transition and a Target of Dasatinib in Breast Cancer

Epithelial-mesenchymal transition (EMT), a switch of polarized epithelial cells to a migratory, fibroblastoid phenotype, is considered a key process driving tumor cell invasiveness and metastasis. Using breast cancer cell lines as a model system, we sought to discover gene expression signatures of EMT with clinical and mechanistic relevance. A supervised comparison of epithelial and mesenchymal breast cancer lines defined a 200-gene EMT signature that was prognostic across multiple breast cancer cohorts. The immunostaining of LYN, a top-ranked EMT signature gene and Src-family tyrosine kinase, was associated with significantly shorter overall survival (P = 0.02) and correlated with the basal-like ("triple-negative") phenotype. In mesenchymal breast cancer lines, RNAi-mediated knockdown of LYN inhibited cell migration and invasion, but not proliferation. Dasatinib, a dual-specificity tyrosine kinase inhibitor, also blocked invasion (but not proliferation) at nanomolar concentrations that inhibit LYN kinase activity, suggesting that LYN is a likely target and that invasion is a relevant end point for dasatinib therapy. Our findings define a prognostically relevant EMT signature in breast cancer and identify LYN as a mediator of invasion and a possible new therapeutic target (and theranostic marker for dasatinib response), with particular relevance to clinically aggressive basal-like breast cancer.

FOXA1 is an Essential Determinant of ERalpha Expression and Mammary Ductal Morphogenesis

FOXA1, estrogen receptor alpha (ERalpha) and GATA3 independently predict favorable outcome in breast cancer patients, and their expression correlates with a differentiated, luminal tumor subtype. As transcription factors, each functions in the morphogenesis of various organs, with ERalpha and GATA3 being established regulators of mammary gland development. Interdependency between these three factors in breast cancer and normal mammary development has been suggested, but the specific role for FOXA1 is not known. Herein, we report that Foxa1 deficiency causes a defect in hormone-induced mammary ductal invasion associated with a loss of terminal end bud formation and ERalpha expression. By contrast, Foxa1 null glands maintain GATA3 expression. Unlike ERalpha and GATA3 deficiency, Foxa1 null glands form milk-producing alveoli, indicating that the defect is restricted to expansion of the ductal epithelium, further emphasizing the novel role for FOXA1 in mammary morphogenesis. Using breast cancer cell lines, we also demonstrate that FOXA1 regulates ERalpha expression, but not GATA3. These data reveal that FOXA1 is necessary for hormonal responsiveness in the developing mammary gland and ERalpha-positive breast cancers, at least in part, through its control of ERalpha expression.

A KRAS-variant in Ovarian Cancer Acts As a Genetic Marker of Cancer Risk

Ovarian cancer (OC) is the single most deadly form of women's cancer, typically presenting as an advanced disease at diagnosis in part due to a lack of known risk factors or genetic markers of risk. The KRAS oncogene and altered levels of the microRNA (miRNA) let-7 are associated with an increased risk of developing solid tumors. In this study, we investigated a hypothesized association between an increased risk of OC and a variant allele of KRAS at rs61764370, referred to as the KRAS-variant, which disrupts a let-7 miRNA binding site in this oncogene. Specimens obtained were tested for the presence of the KRAS-variant from nonselected OC patients in three independent cohorts, two independent ovarian case-control studies, and OC patients with hereditary breast and ovarian cancer syndrome (HBOC) as well as their family members. Our results indicate that the KRAS-variant is associated with more than 25% of nonselected OC cases. Further, we found that it is a marker for a significant increased risk of developing OC, as confirmed by two independent case-control analyses. Lastly, we determined that the KRAS-variant was present in 61% of HBOC patients without BRCA1 or BRCA2 mutations, previously considered uninformative, as well as in their family members with cancer. Our findings strongly support the hypothesis that the KRAS-variant is a genetic marker for increased risk of developing OC, and they suggest that the KRAS-variant may be a new genetic marker of cancer risk for HBOC families without other known genetic abnormalities.

A Locus on 19p13 Modifies Risk of Breast Cancer in BRCA1 Mutation Carriers and is Associated with Hormone Receptor-negative Breast Cancer in the General Population

Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (P(trend) = 2.3 × 10⁻⁹ to P(trend) = 3.9 × 10⁻⁷), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17-1.35; rs2363956 HR = 0.84, 95% CI 0.80-0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor-negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75-0.92, P(trend) = 0.0003) and an association with estrogen receptor-positive disease in the opposite direction (OR = 1.07, 95% CI 1.01-1.14, P(trend) = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (P(trend) = 1 × 10⁻⁷) to P(trend) = 8 × 10⁻⁵; rs2363956 per-allele OR = 0.80, 95% CI 0.74-0.87, P(trend) = 1.1 × 10⁻⁷

A Genome-wide Association Study Identifies Susceptibility Loci for Ovarian Cancer at 2q31 and 8q24

Ovarian cancer accounts for more deaths than all other gynecological cancers combined. To identify common low-penetrance ovarian cancer susceptibility genes, we conducted a genome-wide association study of 507,094 SNPs in 1,768 individuals with ovarian cancer (cases) and 2,354 controls, with follow up of 21,955 SNPs in 4,162 cases and 4,810 controls, leading to the identification of a confirmed susceptibility locus at 9p22 (in BNC2). Here, we report on nine additional candidate loci (defined as having P ≤ 10⁻⁴) identified after stratifying cases by histology, which we genotyped in an additional 4,353 cases and 6,021 controls. We confirmed two new susceptibility loci with P ≤ 5 × 10⁻⁸ (8q24, P = 8.0 × 10⁻¹⁵ and 2q31, P = 3.8 × 10⁻¹⁴) and identified two additional loci that approached genome-wide significance (3q25, P = 7.1 × 10⁻⁸ and 17q21, P = 1.4 × 10⁻⁷). The associations of these loci with serous ovarian cancer were generally stronger than with other cancer subtypes. Analysis of HOXD1, MYC, TIPARP and SKAP1 at these loci and of BNC2 at 9p22 supports a functional role for these genes in ovarian cancer development.

Association of the Variants CASP8 D302H and CASP10 V410I with Breast and Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

The genes caspase-8 (CASP8) and caspase-10 (CASP10) functionally cooperate and play a key role in the initiation of apoptosis. Suppression of apoptosis is one of the major mechanisms underlying the origin and progression of cancer. Previous case-control studies have indicated that the polymorphisms CASP8 D302H and CASP10 V410I are associated with a reduced risk of breast cancer in the general population.

Upregulation of DLX5 Promotes Ovarian Cancer Cell Proliferation by Enhancing IRS-2-AKT Signaling

The distal-less homeobox gene (dlx) 5 encodes a transcription factor that controls jaw formation and appendage differentiation during embryonic development. We had previously found that Dlx5 is overexpressed in an Akt2 transgenic model of T-cell lymphoma. To investigate if DLX5 is involved in human cancer, we screened its expression in the NCI 60 cancer cell line panel. DLX5 was frequently upregulated in cell lines derived from several tumor types, including ovarian cancer. We next validated its upregulation in primary ovarian cancer specimens. Stable knockdown of DLX5 by lentivirus-mediated transduction of short hairpin RNA (shRNA) resulted in reduced proliferation of ovarian cancer cells due to inhibition of cell cycle progression in connection with the downregulation of cyclins A, B1, D1, D2, and E, and decreased phosphorylation of AKT. Cell proliferation resumed following introduction of a DLX5 cDNA harboring wobbled mutations at the shRNA-targeting sites. Cell proliferation was also rescued by transduction of a constitutively active form of AKT. Intriguingly, downregulation of IRS-2 and MET contributed to the suppression of AKT signaling. Moreover, DLX5 was found to directly bind to the IRS-2 promoter and augmented its transcription. Knockdown of DLX5 in xenografts of human ovarian cancer cells resulted in markedly diminished tumor size. In addition, DLX5 was found to cooperate with HRAS in the transformation of human ovarian surface epithelial cells. Together, these data suggest that DLX5 plays a significant role in the pathogenesis of some ovarian cancers.

Alteration of Differentiation Potentials by Modulating GATA Transcription Factors in Murine Embryonic Stem Cells

Background. Mouse embryonic stem (ES) cells can be differentiated in vitro by aggregation and/or retinoic acid (RA) treatment. The principal differentiation lineage in vitro is extraembryonic primitive endoderm. Dab2, Laminin, GATA4, GATA5, and GATA6 are expressed in embryonic primitive endoderm and play critical roles in its lineage commitment. Results. We found that in the absence of GATA4 or GATA5, RA-induced primitive endoderm differentiation of ES cells was reduced. GATA4 (-/-) ES cells express higher level of GATA5, GATA6, and hepatocyte nuclear factor 4 alpha marker of visceral endoderm lineage. GATA5 (-/-) ES cells express higher level of alpha fetoprotein marker of early liver development. GATA6 (-/-) ES cells express higher level of GATA5 as well as mesoderm and cardiomyocyte markers which are collagen III alpha-1 and tropomyosin1 alpha. Thus, deletion of GATA6 precluded endoderm differentiation but promoted mesoderm lineages. Conclusions. GATA4, GATA5, and GATA6 each convey a unique gene expression pattern and influences ES cell differentiation. We showed that ES cells can be directed to avoid differentiating into primitive endoderm and to adopt unique lineages in vitro by modulating GATA factors. The finding offers a potential approach to produce desirable cell types from ES cells, useful for regenerative cell therapy.

Common Genetic Variants and Modification of Penetrance of BRCA2-associated Breast Cancer

The considerable uncertainty regarding cancer risks associated with inherited mutations of BRCA2 is due to unknown factors. To investigate whether common genetic variants modify penetrance for BRCA2 mutation carriers, we undertook a two-staged genome-wide association study in BRCA2 mutation carriers. In stage 1 using the Affymetrix 6.0 platform, 592,163 filtered SNPs genotyped were available on 899 young (<40 years) affected and 804 unaffected carriers of European ancestry. Associations were evaluated using a survival-based score test adjusted for familial correlations and stratified by country of the study and BRCA2*6174delT mutation status. The genomic inflation factor (λ) was 1.011. The stage 1 association analysis revealed multiple variants associated with breast cancer risk: 3 SNPs had p-values<10(-5) and 39 SNPs had p-values<10(-4). These variants included several previously associated with sporadic breast cancer risk and two novel loci on chromosome 20 (rs311499) and chromosome 10 (rs16917302). The chromosome 10 locus was in ZNF365, which contains another variant that has recently been associated with breast cancer in an independent study of unselected cases. In stage 2, the top 85 loci from stage 1 were genotyped in 1,264 cases and 1,222 controls. Hazard ratios (HR) and 95% confidence intervals (CI) for stage 1 and 2 were combined and estimated using a retrospective likelihood approach, stratified by country of residence and the most common mutation, BRCA2*6174delT. The combined per allele HR of the minor allele for the novel loci rs16917302 was 0.75 (95% CI 0.66-0.86, ) and for rs311499 was 0.72 (95% CI 0.61-0.85, ). FGFR2 rs2981575 had the strongest association with breast cancer risk (per allele HR = 1.28, 95% CI 1.18-1.39, ). These results indicate that SNPs that modify BRCA2 penetrance identified by an agnostic approach thus far are limited to variants that also modify risk of sporadic BRCA2 wild-type breast cancer.

Evidence for SMAD3 As a Modifier of Breast Cancer Risk in BRCA2 Mutation Carriers

Current attempts to identify genetic modifiers of BRCA1 and BRCA2 associated risk have focused on a candidate gene approach, based on knowledge of gene functions, or the development of large genome-wide association studies. In this study, we evaluated 24 SNPs tagged to 14 candidate genes derived through a novel approach that analysed gene expression differences to prioritise candidate modifier genes for association studies.

Enhancer of Zeste Homolog 2 Promotes the Proliferation and Invasion of Epithelial Ovarian Cancer Cells

Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressive complex 2 (PRC2) that includes noncatalytic subunits suppressor of zeste 12 (SUZ12) and embryonic ectoderm development (EED). When present in PRC2, EZH2 catalyzes trimethylation on lysine 27 residue of histone H3 (H3K27Me3), resulting in epigenetic silencing of gene expression. Here, we investigated the expression and function of EZH2 in epithelial ovarian cancer (EOC). When compared with primary human ovarian surface epithelial (pHOSE) cells, EZH2, SUZ12, and EED were expressed at higher levels in all 8 human EOC cell lines tested. Consistently, H3K27Me3 was also overexpressed in human EOC cell lines compared with pHOSE cells. EZH2 was significantly overexpressed in primary human EOCs (n = 134) when compared with normal ovarian surface epithelium (n = 46; P < 0.001). EZH2 expression positively correlated with expression of Ki67 (P < 0.001; a marker of cell proliferation) and tumor grade (P = 0.034) but not tumor stage (P = 0.908) in EOC. There was no correlation of EZH2 expression with overall (P = 0.3) or disease-free survival (P = 0.2) in high-grade serous histotype EOC patients (n = 98). Knockdown of EZH2 expression reduced the level of H3K27Me3 and suppressed the growth of human EOC cells both in vitro and in vivo in xenograft models. EZH2 knockdown induced apoptosis of human EOC cells. Finally, we showed that EZH2 knockdown suppressed the invasion of human EOC cells. Together, these data demonstrate that EZH2 is frequently overexpressed in human EOC cells and its overexpression promotes the proliferation and invasion of human EOC cells, suggesting that EZH2 is a potential target for developing EOC therapeutics.

Common Breast Cancer Susceptibility Alleles and the Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Implications for Risk Prediction

The known breast cancer susceptibility polymorphisms in FGFR2, TNRC9/TOX3, MAP3K1, LSP1, and 2q35 confer increased risks of breast cancer for BRCA1 or BRCA2 mutation carriers. We evaluated the associations of 3 additional single nucleotide polymorphisms (SNPs), rs4973768 in SLC4A7/NEK10, rs6504950 in STXBP4/COX11, and rs10941679 at 5p12, and reanalyzed the previous associations using additional carriers in a sample of 12,525 BRCA1 and 7,409 BRCA2 carriers. Additionally, we investigated potential interactions between SNPs and assessed the implications for risk prediction. The minor alleles of rs4973768 and rs10941679 were associated with increased breast cancer risk for BRCA2 carriers (per-allele HR = 1.10, 95% CI: 1.03-1.18, P = 0.006 and HR = 1.09, 95% CI: 1.01-1.19, P = 0.03, respectively). Neither SNP was associated with breast cancer risk for BRCA1 carriers, and rs6504950 was not associated with breast cancer for either BRCA1 or BRCA2 carriers. Of the 9 polymorphisms investigated, 7 were associated with breast cancer for BRCA2 carriers (FGFR2, TOX3, MAP3K1, LSP1, 2q35, SLC4A7, 5p12, P = 7 × 10(-11) - 0.03), but only TOX3 and 2q35 were associated with the risk for BRCA1 carriers (P = 0.0049, 0.03, respectively). All risk-associated polymorphisms appear to interact multiplicatively on breast cancer risk for mutation carriers. Based on the joint genotype distribution of the 7 risk-associated SNPs in BRCA2 mutation carriers, the 5% of BRCA2 carriers at highest risk (i.e., between 95th and 100th percentiles) were predicted to have a probability between 80% and 96% of developing breast cancer by age 80, compared with 42% to 50% for the 5% of carriers at lowest risk. Our findings indicated that these risk differences might be sufficient to influence the clinical management of mutation carriers.

Anti-human Embryonic Stem Cell Monoclonal Antibody Hesca-2 Binds to a Glycan Epitope Commonly Found on Carcinomas

Hesca-2, a monoclonal antibody (mAb) IgM raised to the human embryonic stem cell (hESC) line BG-01v, binds with high affinity (nM) to the disaccharide epitope (Galβ1-3GlcNAc) on a glycan microarray. This epitope was expressed on pluripotent progenitor hESCs in culture, but not in various differentiated cells derived from hESC based on immunofluorescence microscopy. Hesca-2 stains a limited subset of cells in adult human tissues (eg, esophagus and breast). This mAb also crossreacts in immunofluorescence microscopy studies with several human ovarian cancer cell lines and is cytotoxic to them based on the release of cytosolic enzyme lactate dehydrogenase into the media. Hesca-2 immunohistochemically stained tissue from a number of human tumors, including ovary, breast, colon, and esophageal cancer. These data suggest that Hesca-2 recognizes a surface marker found both in stem cells and certain cancer cells.

Role of Gamma-synuclein in Microtubule Regulation

Gamma-synuclein is a neuronal protein found in peripheral and motor nerve systems. It becomes highly expressed in metastatic but not in primary tumor or normal tissues. The close association between gamma-synuclein expression and cancer spreading has been demonstrated in a broad range of malignancies. Our previous study showed that exogenous expression of gamma-synuclein in ovarian and breast cancer cells significantly enhanced cell migration and resistance to paclitaxel-induced apoptotic death. In our current research, we found that gamma-synuclein can affect microtubule properties and act as a functional microtubule associated protein. In vitro assays revealed that gamma-synuclein can bind and promote tubulin polymerization, induce the microtubule bundling and alter microtubule morphology developed in the presence of microtubule associated protein 2 (MAP2). Using cancer cell lysate, gamma-synuclein protein was found to be localized in both cytosolic compartment and extracted cytoskeleton portion. Immunofluorescence staining demonstrated that gamma-synuclein can colocalize with microtubule in HeLa cells and decrease rigidity of microtubule bundles caused by paclitaxel. In human ovarian cancer epithelial A2780 cells, gamma-synuclein overexpression improved cell adhesion and microtubule structure upon paclitaxel treatment. Importantly, it led to microtubule-dependent mitochondria clustering at perinuclear area. These observations suggest that overexpression of gamma-synuclein may reduce cell chemo-sensitivity of tumor cells through decreasing microtubule rigidity. In summary, our studies suggested that gamma-synuclein can directly participate in microtubule regulation.

Protein Microarray Signature of Autoantibody Biomarkers for the Early Detection of Breast Cancer

Cancer patients spontaneously generate autoantibodies (AAb) to tumor-derived proteins. To detect AAb, we have probed novel high-density custom protein microarrays (NAPPA) expressing 4988 candidate tumor antigens with sera from patients with early stage breast cancer (IBC), and bound IgG was measured. We used a three-phase serial screening approach. First, a prescreen was performed to eliminate uninformative antigens. Sera from stage I-III IBC (n = 53) and healthy women (n = 53) were screened for AAb to all 4988 protein antigens. Antigens were selected if the 95th percentile of signal of cases and controls were significantly different (p < 0.05) and if the number of cases with signals above the 95th percentile of controls was significant (p < 0.05). These 761 antigens were screened using an independent set of IBC sera (n = 51) and sera from women with benign breast disease (BBD) (n = 39). From these, 119 antigens had a partial area under the ROC curve (p < 0.05), with sensitivities ranging from 9-40% at >91% specificity. Twenty-eight of these antigens were confirmed using an independent serum cohort (n = 51 cases/38 controls, p < 0.05). Using all 28 AAb, a classifier was identified with a sensitivity of 80.8% and a specificity of 61.6% (AUC = 0.756). These are potential biomarkers for the early detection of breast cancer.

Novel Glycan Biomarkers for the Detection of Lung Cancer

Lung cancer has a poor prognosis and a 5-year survival rate of 15%. Therefore, early detection is vital. Diagnostic testing of serum for cancer-associated biomarkers is a noninvasive detection method. Glycosylation is the most frequent post-translational modification of proteins and it has been shown to be altered in cancer. In this paper, high-throughput HILIC technology was applied to serum samples from 100 lung cancer patients, alongside 84 age-matched controls and significant alterations in N-linked glycosylation were identified. Increases were detected in glycans containing Sialyl Lewis X, monoantennary glycans, highly sialylated glycans and decreases were observed in core-fucosylated biantennary glycans, with some being detectable as early as in Stage I. The N-linked glycan profile of haptoglobin demonstrated similar alterations to those elucidated in the total serum glycome. The most significantly altered HILIC peak in lung cancer samples includes predominantly disialylated and tri- and tetra-antennary glycans. This potential disease marker is significantly increased across all disease groups compared to controls and a strong disease effect is visible even after the effect of smoking is accounted for. The combination of all glyco-biomarkers had the highest sensitivity and specificity. This study identifies candidates for further study as potential biomarkers for the disease.

A Unique Spectrum of Somatic PIK3CA (p110alpha) Mutations Within Primary Endometrial Carcinomas

The goal of this study was to comprehensively define the incidence of mutations in all exons of PIK3CA in both endometrioid endometrial cancer (EEC) and nonendometrioid endometrial cancer (NEEC).

Contribution of Large Genomic BRCA1 Alterations to Early-onset Breast Cancer Selected for Family History and Tumour Morphology: a Report from The Breast Cancer Family Registry

Selecting women affected with breast cancer who are most likely to carry a germline mutation in BRCA1 and applying the most appropriate test methodology remains challenging for cancer genetics services. We sought to test the value of selecting women for BRCA1 mutation testing on the basis of family history and/or breast tumour morphology criteria as well as the value of testing for large genomic alterations in BRCA1.

Ovarian Cancer Biomarker Performance in Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Specimens

Establishing a cancer screening biomarker's intended performance requires "phase III" specimens obtained in asymptomatic individuals before clinical diagnosis rather than "phase II" specimens obtained from symptomatic individuals at diagnosis. We used specimens from the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial to evaluate ovarian cancer biomarkers previously assessed in phase II sets. Phase II specimens from 180 ovarian cancer cases and 660 benign disease or general population controls were assembled from four Early Detection Research Network or Ovarian Cancer Specialized Program of Research Excellence sites and used to rank 49 biomarkers. Thirty-five markers, including 6 additional markers from a fifth site, were then evaluated in PLCO proximate specimens from 118 women with ovarian cancer and 474 matched controls. Top markers in phase II specimens included CA125, HE4, transthyretin, CA15.3, and CA72.4 with sensitivity at 95% specificity ranging from 0.73 to 0.40. Except for transthyretin, these markers had similar or better sensitivity when moving to phase III specimens that had been drawn within 6 months of the clinical diagnosis. Performance of all markers declined in phase III specimens more remote than 6 months from diagnosis. Despite many promising new markers for ovarian cancer, CA125 remains the single-best biomarker in the phase II and phase III specimens tested in this study.

The Role of KRAS Rs61764370 in Invasive Epithelial Ovarian Cancer: Implications for Clinical Testing

An assay for the single-nucleotide polymorphism (SNP), rs61764370, has recently been commercially marketed as a clinical test to aid ovarian cancer risk evaluation in women with family histories of the disease. rs67164370 is in a 3'-UTR miRNA binding site of the KRAS oncogene and is a candidate for epithelial ovarian cancer (EOC) susceptibility. However, only one published article, analyzing fewer than 1,000 subjects in total, has examined this association.

A Gynecologic Oncology Group Phase II Trial of the Protein Kinase C-beta Inhibitor, Enzastaurin and Evaluation of Markers with Potential Predictive and Prognostic Value in Persistent or Recurrent Epithelial Ovarian and Primary Peritoneal Malignancies

Protein kinase C (PKC) activation contributes to proliferation and angiogenesis in epithelial ovarian or primary peritoneal carcinoma (EOC/PPC). A multi-institutional phase II trial was conducted to evaluate the efficacy and safety of PKCβ inhibitor enzastaurin in persistent or recurrent EOC/PPC and to explore potential prognostic and predictive biomarkers.

Nuclear Envelope Structural Defects Cause Chromosomal Numerical Instability and Aneuploidy in Ovarian Cancer

Despite our substantial understanding of molecular mechanisms and gene mutations involved in cancer, the technical approaches for diagnosis and prognosis of cancer are limited. In routine clinical diagnosis of cancer, the procedure is very basic: nuclear morphology is used as a common assessment of the degree of malignancy, and hence acts as a prognostic and predictive indicator of the disease. Furthermore, though the atypical nuclear morphology of cancer cells is believed to be a consequence of oncogenic signaling, the molecular basis remains unclear. Another common characteristic of human cancer is aneuploidy, but the causes and its role in carcinogenesis are not well established.

Exploring the Link Between MORF4L1 and Risk of Breast Cancer

Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens.

Expression of Siglec-11 by Human and Chimpanzee Ovarian Stromal Cells, with Uniquely Human Ligands: Implications for Human Ovarian Physiology and Pathology

Siglecs (Sialic acid-binding Immunoglobulin Superfamily Lectins) are cell surface signaling receptors of the I-type lectin group that recognize sialic acid-bearing glycans. CD33-related-Siglecs are a subset with expression primarily in cells of hematopoietic origin and functional relevance to immune reactions. Earlier we reported a human-specific gene conversion event that markedly changed the coding region for the extracellular domain of Siglec-11, associated with human-specific expression in microglia (Hayakawa T, Angata T, Lewis AL, Mikkelsen TS, Varki NM, Varki A. 2005. A human-specific gene in microglia. Science. 309:1693). Analyzing human gene microarrays to define new patterns of expression, we observed high levels of SIGLEC11 transcript in the ovary and adrenal cortex. Thus, we examined human and chimpanzee tissues using a well-characterized anti-Siglec-11 mouse monoclonal antibody. Although adrenal expression was variable and confined to infiltrating macrophages in capillaries, ovarian expression of Siglec-11 in both humans and chimpanzees was on fibroblasts, the first example of Siglec expression on mesenchyme-derived stromal cells. Cytokines from such ovarian stromal fibroblasts play important roles in follicle development and ovulation. Stable transfection of SIGLEC11 into a primary human ovarian stromal fibroblast cell line altered the secretion of growth-regulated oncogene α, interleukin (IL)-10, IL-7, transforming growth factor β1 and tumor necrosis factor-α, cytokines involved in ovarian physiology. Probing for Siglec-11 ligands revealed distinct and strong mast cell expression in human ovaries, contrasting to diffuse stromal ligands in chimpanzee ovaries. Interestingly, there was a trend of increased Siglec-11 expression in post-menopausal ovaries compared with pre-menopausal ones. Siglec-11 expression was also found on human ovarian stromal tumors and in polycystic ovarian syndrome, a human-specific disease. These results indicate potential roles for Siglec-11 in ovarian physiology and human evolution.

PIK3R1 (p85α) is Somatically Mutated at High Frequency in Primary Endometrial Cancer

Phosphoinositide 3-kinase (PI3K) is an important therapeutic target. Mutations in PIK3CA, which encodes p110α, the catalytic subunit of PI3K, occur in endometrioid endometrial cancers (EEC) and nonendometrioid endometrial cancers (NEEC). The goal of this study was to determine whether PIK3R1, which encodes p85α, the inhibitory subunit of PI3K, is mutated in endometrial carcinoma. We carried out exonic sequencing of PIK3R1 from 42 EECs and 66 NEECs. The pattern of PIK3R1 mutations was compared with the patterns of PIK3CA, PTEN, and KRAS mutations. The biochemical effect of seven PIK3R1 mutations was examined by stable expression in U2OS cells, followed by coimmunoprecipitation analysis of p110α, and Western blotting of phospho-AKT(Ser473) (p-AKT(Ser473)). We found that PIK3R1 was somatically mutated in 43% of EECs and 12% of NEECs. The majority of mutations (93.3%) were localized to the p85α-nSH2 and -iSH2 domains. Several mutations were recurrent. PIK3R1 mutations were significantly (P = 0.0015) more frequent in PIK3CA-wild type EECs (70%) than in PIK3CA mutant EECs (18%). Introduction of wild-type p85α into U2OS cells reduced the level of p-AKT(Ser473) compared with the vector control. Five p85α mutants, p85αdelH450-E451, p85αdelK459, p85αdelY463-L466, p85αdelR574-T576, and the p85αN564D positive control, were shown to bind p110α and led to increased levels of p-AKT(Ser473). The p85αR348X and p85αK511VfsX2 mutants did not bind p110α and showed no appreciable change in p-AKT(Ser473) levels. In conclusion, our study has revealed a new mode of PI3K alteration in primary endometrial tumors and warrants future studies to determine whether PIK3R1 mutations correlate with clinical outcome to targeted therapies directed against the PI3K pathway in EEC and NEEC.

Differential Expressions of Adhesive Molecules and Proteases Define Mechanisms of Ovarian Tumor Cell Matrix Penetration/invasion

Epithelial ovarian cancer is an aggressive and deadly disease and understanding its invasion mechanisms is critical for its treatment. We sought to study the penetration/invasion of ovarian tumor cells into extracellular matrices (ECMs) using a fibroblast-derived three-dimensional (3D) culture model and time-lapse and confocal imaging. Twelve ovarian tumor cells were evaluated and classified into distinct groups based on their ECM remodeling phenotypes; those that degraded the ECM (represented by OVCAR5 cells) and those that did not (represented by OVCAR10 cells). Cells exhibiting a distinct ECM modifying behavior were also segregated by epithelial- or mesenchymal-like phenotypes and uPA or MMP-2/MMP-9 expression. The cells, which presented epithelial-like phenotypes, penetrated the ECM using proteases and maintained intact cell-cell interactions, while cells exhibiting mesenchymal phenotypes modified the matrices via Rho-associated serine/threonine kinase (ROCK) in the absence of apparent cell-cell interactions. Overall, this study demonstrates that different mechanisms of modifying matrices by ovarian tumor cells may reflect heterogeneity among tumors and emphasize the need to systematically assess these mechanisms to better design effective therapies.

A Second Independent Locus Within DMRT1 is Associated with Testicular Germ Cell Tumor Susceptibility

Susceptibility to testicular germ cell tumors (TGCT) has a significant heritable component, and genome-wide association studies (GWASs) have identified association with variants in several genes, including KITLG, SPRY4, BAK1, TERT, DMRT1 and ATF7IP. In our GWAS, we genotyped 349 TGCT cases and 919 controls and replicated top hits in an independent set of 439 cases and 960 controls in an attempt to find novel TGCT susceptibility loci. We identified a second marker (rs7040024) in the doublesex and mab-3-related transcription factor 1 (DMRT1) gene that is independent of the previously described risk allele (rs755383) at this locus. In combined analysis that mutually conditions on both DMRT1 single nucleotide polymorphism markers, TGCT cases had elevated odds of carriage of the rs7040024 major A allele [per-allele odds ratio (OR) = 1.48, 95% confidence interval (CI) 1.23, 1.78; P = 2.52 × 10(-5)] compared with controls, while the association with rs755383 persisted (per allele OR = 1.26, 95% CI 1.08, 1.47, P = 0.0036). In similar analyses, the association of rs7040024 among men with seminomatous tumors did not differ from that among men with non-seminomatous tumors. In combination with KITLG, the strongest TGCT susceptibility locus found to date, men with TGCT had greatly elevated odds (OR = 14.1, 95% CI 5.12, 38.6; P = 2.98 × 10(-7)) of being double homozygotes for the risk (major) alleles at DMRT (rs7040024) and KITLG (rs4474514) when compared with men without TGCT. Our findings continue to corroborate that genes influencing male germ cell development and differentiation have emerged as the major players in inherited TGCT susceptibility.

Frequent Genetic Abnormalities of the PI3K/AKT Pathway in Primary Ovarian Cancer Predict Patient Outcome

Identification and characterization of underlying genetic aberrations could facilitate diagnosis and treatment of ovarian cancer. Copy number analysis using array Comparative Genomic Hybridization (aCGH) on 93 primary ovarian tumors identified PI3K/AKT pathway as the most frequently altered cancer related pathway. Furthermore, survival analyses to correlate gene copy number and mutation data with patient outcome showed that copy number gains of PIK3CA, PIK3CB, and PIK3R4 in these tumors were associated with decreased survival. To confirm these findings at the protein level, immunohistochemistry (IHC) for PIK3CA product p110α and p-Akt was performed on tissue microarrays from 522 independent serous ovarian cancers. Overexpression of either of these two proteins was found to be associated with decreased survival. Multivariant analysis from these samples further showed that overexpression of p-AKT and/or p110α is an independent prognostic factor for these tumors. siRNAs targeting altered PI3K/AKT pathway genes inhibited proliferation and induced apoptosis in ovarian cancer cell lines. In addition, the effect of the siRNAs in different cell lines seemed to correlate with the particular genetic alterations that the cell line carries. These results strongly support the utilization of PI3K pathway inhibitors in ovarian cancer. They also suggest identifying the specific component in the PI3K pathway that is genetically altered has the potential to help select the most effective therapy. Both mutation as well as copy number changes can be used as predictive markers for this purpose.

Haplotype Structure in Ashkenazi Jewish BRCA1 and BRCA2 Mutation Carriers

Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews.

Novel Surface Targets and Serum Biomarkers from the Ovarian Cancer Vasculature

The molecular phenotype of tumor vasculature is different from normal vasculature, offering new opportunities for diagnosis and therapy of cancer, but the identification of tumor-restricted targets remains a challenge. We investigated 13 tumor vascular markers (TVMs) from 50 candidates identified through expression profiling of ovarian cancer vascular cells and selected to be either transmembrane or secreted, and to be either absent or expressed at low levels in normal tissues while overexpressed in tumors, based on analysis of 1,110 normal and tumor tissues from publicly available Affymetrix microarray data. Tumor-specific expression of each TVM was confirmed at the protein level in tumor tissue and/or in serum. Among the 13 TVMs, 11 were expressed on tumor vascular endothelium; the remaining 2 TVMs were expressed by tumor leukocytes. Our results demonstrate that certain transmembrane TVMs such as ADAM12 and CDCP1 are selectively expressed in tumor vasculature and represent promising targets for vascular imaging or anti-vascular therapy of epithelial ovarian cancer, while secreted or shed molecules such as TNFRSF21/DR6 can function as serum biomarkers. We have identified novel tumor-specific vasculature markers which appear promising for cancer serum diagnostics, molecular imaging and/or therapeutic targeting applications and warrant further clinical development.

Loss of A-type Lamin Expression Compromises Nuclear Envelope Integrity in Breast Cancer

Through advances in technology, the genetic basis of cancer has been investigated at the genomic level, and many fundamental questions have begun to be addressed. Among several key unresolved questions in cancer biology, the molecular basis for the link between nuclear deformation and malignancy has not been determined. Another hallmark of human cancer is aneuploidy; however, the causes and consequences of aneuploidy are unanswered and are hotly contested topics. We found that nuclear lamina proteins lamin A/C are absent in a significant fraction (38%) of human breast cancer tissues. Even in lamin A/C-positive breast cancer, lamin A/C expression is heterogeneous or aberrant (such as non-nuclear distribution) in the population of tumor cells, as determined by immunohistology and immunofluorescence microscopy. In most breast cancer cell lines, a significant fraction of the lamin A/C-negative population was observed. To determine the consequences of the loss of lamin A/C, we suppressed their expression by shRNA in non-cancerous primary breast epithelial cells. Down-regulation of lamin A/C in breast epithelial cells led to morphological deformation, resembling that of cancer cells, as observed by immunofluorescence microscopy. The lamin A/C-suppressed breast epithelial cells developed aneuploidy as determined by both flow cytometry and fluorescence in situ hybridization. We conclude that the loss of nuclear envelope structural proteins lamin A/C in breast cancer underlies the two hallmarks of cancer aberrations in nuclear morphology and aneuploidy.

Serum Antimüllerian Hormone in Healthy Premenopausal Women

Antimüllerian hormone (AMH) is extensively studied in ovarian aging and pathology; however, little is known about correlates in healthy premenopausal women. We found that AMH levels are strongly inversely associated with age and differed significantly between oral contraceptive pill users and nonusers, whereas no significant associations were seen between AMH and other clinical, behavioral, and anthropometric characteristics and laboratory variables, making it an attractive hormone for clinical applications.

Phase II Trial of the MTOR Inhibitor, Temsirolimus and Evaluation of Circulating Tumor Cells and Tumor Biomarkers in Persistent and Recurrent Epithelial Ovarian and Primary Peritoneal Malignancies: a Gynecologic Oncology Group Study

Patients with persistent/recurrent epithelial ovarian cancer/primary peritoneal cancer (EOC/PPC) have limited treatment options. AKT and PI3K pathway activation is common in EOC/PPC, resulting in constitutive activation of downstream mTOR. The GOG conducted a phase II evaluation of efficacy and safety for the mTOR inhibitor, temsirolimus in EOC/PPC and explored circulating tumor cells (CTC) and AKT/mTOR/downstream tumor markers.

Wnt5a Suppresses Epithelial Ovarian Cancer by Promoting Cellular Senescence

Epithelial ovarian cancer (EOC) remains the most lethal gynecologic malignancy in the United States. Thus, there is an urgent need to develop novel therapeutics for this disease. Cellular senescence is an important tumor suppression mechanism that has recently been suggested as a novel mechanism to target for developing cancer therapeutics. Wnt5a is a noncanonical Wnt ligand that plays a context-dependent role in human cancers. Here, we investigate the role of Wnt5a in regulating senescence of EOC cells. We show that Wnt5a is expressed at significantly lower levels in human EOC cell lines and in primary human EOCs (n = 130) compared with either normal ovarian surface epithelium (n = 31; P = 0.039) or fallopian tube epithelium (n = 28; P < 0.001). Notably, a lower level of Wnt5a expression correlates with tumor stage (P = 0.003) and predicts shorter overall survival in EOC patients (P = 0.003). Significantly, restoration of Wnt5a expression inhibits the proliferation of human EOC cells both in vitro and in vivo in an orthotopic EOC mouse model. Mechanistically, Wnt5a antagonizes canonical Wnt/β-catenin signaling and induces cellular senescence by activating the histone repressor A/promyelocytic leukemia senescence pathway. In summary, we show that loss of Wnt5a predicts poor outcome in EOC patients and Wnt5a suppresses the growth of EOC cells by triggering cellular senescence. We suggest that strategies to drive senescence in EOC cells by reconstituting Wnt5a signaling may offer an effective new strategy for EOC therapy.

Common Breast Cancer Susceptibility Loci Are Associated with Triple-negative Breast Cancer

Triple-negative breast cancers are an aggressive subtype of breast cancer with poor survival, but there remains little known about the etiologic factors that promote its initiation and development. Commonly inherited breast cancer risk factors identified through genome-wide association studies display heterogeneity of effect among breast cancer subtypes as defined by the status of estrogen and progesterone receptors. In the Triple Negative Breast Cancer Consortium (TNBCC), 22 common breast cancer susceptibility variants were investigated in 2,980 Caucasian women with triple-negative breast cancer and 4,978 healthy controls. We identified six single-nucleotide polymorphisms, including rs2046210 (ESR1), rs12662670 (ESR1), rs3803662 (TOX3), rs999737 (RAD51L1), rs8170 (19p13.1), and rs8100241 (19p13.1), significantly associated with the risk of triple-negative breast cancer. Together, our results provide convincing evidence of genetic susceptibility for triple-negative breast cancer.

Common Variants of the BRCA1 Wild-type Allele Modify the Risk of Breast Cancer in BRCA1 Mutation Carriers

Mutations in the BRCA1 gene substantially increase a woman's lifetime risk of breast cancer. However, there is great variation in this increase in risk with several genetic and non-genetic modifiers identified. The BRCA1 protein plays a central role in DNA repair, a mechanism that is particularly instrumental in safeguarding cells against tumorigenesis. We hypothesized that polymorphisms that alter the expression and/or function of BRCA1 carried on the wild-type (non-mutated) copy of the BRCA1 gene would modify the risk of breast cancer in carriers of BRCA1 mutations. A total of 9874 BRCA1 mutation carriers were available in the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) for haplotype analyses of BRCA1. Women carrying the rare allele of single nucleotide polymorphism rs16942 on the wild-type copy of BRCA1 were at decreased risk of breast cancer (hazard ratio 0.86, 95% confidence interval 0.77-0.95, P = 0.003). Promoter in vitro assays of the major BRCA1 haplotypes showed that common polymorphisms in the regulatory region alter its activity and that this effect may be attributed to the differential binding affinity of nuclear proteins. In conclusion, variants on the wild-type copy of BRCA1 modify risk of breast cancer among carriers of BRCA1 mutations, possibly by altering the efficiency of BRCA1 transcription.

Predisposition to Cancer Caused by Genetic and Functional Defects of Mammalian Atad5

ATAD5, the human ortholog of yeast Elg1, plays a role in PCNA deubiquitination. Since PCNA modification is important to regulate DNA damage bypass, ATAD5 may be important for suppression of genomic instability in mammals in vivo. To test this hypothesis, we generated heterozygous (Atad5(+/m)) mice that were haploinsuffficient for Atad5. Atad5(+/m) mice displayed high levels of genomic instability in vivo, and Atad5(+/m) mouse embryonic fibroblasts (MEFs) exhibited molecular defects in PCNA deubiquitination in response to DNA damage, as well as DNA damage hypersensitivity and high levels of genomic instability, apoptosis, and aneuploidy. Importantly, 90% of haploinsufficient Atad5(+/m) mice developed tumors, including sarcomas, carcinomas, and adenocarcinomas, between 11 and 20 months of age. High levels of genomic alterations were evident in tumors that arose in the Atad5(+/m) mice. Consistent with a role for Atad5 in suppressing tumorigenesis, we also identified somatic mutations of ATAD5 in 4.6% of sporadic human endometrial tumors, including two nonsense mutations that resulted in loss of proper ATAD5 function. Taken together, our findings indicate that loss-of-function mutations in mammalian Atad5 are sufficient to cause genomic instability and tumorigenesis.

A Common Variant at the TERT-CLPTM1L Locus is Associated with Estrogen Receptor-negative Breast Cancer

Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 × 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 × 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 × 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.

Common Breast Cancer Susceptibility Alleles Are Associated with Tumour Subtypes in BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2

ABSTRACT: INTRODUCTION: Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour. METHODS: We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort approach. RESULTS: The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17 to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status. CONCLUSIONS: The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.

Bench to Bedside and Back Again: Personalizing Treatment for Patients with GIST

Interplay Between BRCA1 and RHAMM Regulates Epithelial Apicobasal Polarization and May Influence Risk of Breast Cancer

Differentiated mammary epithelium shows apicobasal polarity, and loss of tissue organization is an early hallmark of breast carcinogenesis. In BRCA1 mutation carriers, accumulation of stem and progenitor cells in normal breast tissue and increased risk of developing tumors of basal-like type suggest that BRCA1 regulates stem/progenitor cell proliferation and differentiation. However, the function of BRCA1 in this process and its link to carcinogenesis remain unknown. Here we depict a molecular mechanism involving BRCA1 and RHAMM that regulates apicobasal polarity and, when perturbed, may increase risk of breast cancer. Starting from complementary genetic analyses across families and populations, we identified common genetic variation at the low-penetrance susceptibility HMMR locus (encoding for RHAMM) that modifies breast cancer risk among BRCA1, but probably not BRCA2, mutation carriers: n = 7,584, weighted hazard ratio ((w)HR) = 1.09 (95% CI 1.02-1.16), p(trend) = 0.017; and n = 3,965, (w)HR = 1.04 (95% CI 0.94-1.16), p(trend) = 0.43; respectively. Subsequently, studies of MCF10A apicobasal polarization revealed a central role for BRCA1 and RHAMM, together with AURKA and TPX2, in essential reorganization of microtubules. Mechanistically, reorganization is facilitated by BRCA1 and impaired by AURKA, which is regulated by negative feedback involving RHAMM and TPX2. Taken together, our data provide fundamental insight into apicobasal polarization through BRCA1 function, which may explain the expanded cell subsets and characteristic tumor type accompanying BRCA1 mutation, while also linking this process to sporadic breast cancer through perturbation of HMMR/RHAMM.

An Integrative Genomic Approach Identifies P73 and P63 As Activators of MiR-200 MicroRNA Family Transcription

Although microRNAs (miRNAs) are important regulators of gene expression, the transcriptional regulation of miRNAs themselves is not well understood. We employed an integrative computational pipeline to dissect the transcription factors (TFs) responsible for altered miRNA expression in ovarian carcinoma. Using experimental data and computational predictions to define miRNA promoters across the human genome, we identified TFs with binding sites significantly overrepresented among miRNA genes overexpressed in ovarian carcinoma. This pipeline nominated TFs of the p53/p63/p73 family as candidate drivers of miRNA overexpression. Analysis of data from an independent set of 253 ovarian carcinomas in The Cancer Genome Atlas showed that p73 and p63 expression is significantly correlated with expression of miRNAs whose promoters contain p53/p63/p73 family binding sites. In experimental validation of specific miRNAs predicted by the analysis to be regulated by p73 and p63, we found that p53/p63/p73 family binding sites modulate promoter activity of miRNAs of the miR-200 family, which are known regulators of cancer stem cells and epithelial-mesenchymal transitions. Furthermore, in chromatin immunoprecipitation studies both p73 and p63 directly associated with the miR-200b/a/429 promoter. This study delineates an integrative approach that can be applied to discover transcriptional regulatory mechanisms in other biological settings where analogous genomic data are available.

A Phase II Evaluation of Lapatinib in the Treatment of Persistent or Recurrent Epithelial Ovarian or Primary Peritoneal Carcinoma: A Gynecologic Oncology Group Study

Activation and dimerization of the ERBB family play a role in the pathogenesis and progression of ovarian cancer. We conducted a phase II trial to evaluate the activity and tolerability of lapatinib in patients with recurrent or persistent epithelial ovarian cancer (EOC) and to explore the clinical value of expression levels of epidermal growth factor receptors (EGFR), phosphorylated EGFR, HER-2/neu, and Ki-67, and the presence of EGFR mutations.

Pathology of Breast and Ovarian Cancers Among BRCA1 and BRCA2 Mutation Carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA)

Previously, small studies have found that BRCA1 and BRCA2 breast tumors differ in their pathology. Analysis of larger datasets of mutation carriers should allow further tumor characterization.

The KL-VS Sequence Variant of Klotho and Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Klotho (KL) is a putative tumor suppressor gene in breast and pancreatic cancers located at chromosome 13q12. A functional sequence variant of Klotho (KL-VS) was previously reported to modify breast cancer risk in Jewish BRCA1 mutation carriers. The effect of this variant on breast and ovarian cancer risks in non-Jewish BRCA1/BRCA2 mutation carriers has not been reported. The KL-VS variant was genotyped in women of European ancestry carrying a BRCA mutation: 5,741 BRCA1 mutation carriers (2,997 with breast cancer, 705 with ovarian cancer, and 2,039 cancer free women) and 3,339 BRCA2 mutation carriers (1,846 with breast cancer, 207 with ovarian cancer, and 1,286 cancer free women) from 16 centers. Genotyping was accomplished using TaqMan(®) allelic discrimination or matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Data were analyzed within a retrospective cohort approach, stratified by country of origin and Ashkenazi Jewish origin. The per-allele hazard ratio (HR) for breast cancer was 1.02 (95% CI 0.93-1.12, P = 0.66) for BRCA1 mutation carriers and 0.92 (95% CI 0.82-1.04, P = 0.17) for BRCA2 mutation carriers. Results remained unaltered when analysis excluded prevalent breast cancer cases. Similarly, the per-allele HR for ovarian cancer was 1.01 (95% CI 0.84-1.20, P = 0.95) for BRCA1 mutation carriers and 0.9 (95% CI 0.66-1.22, P = 0.45) for BRCA2 mutation carriers. The risk did not change when carriers of the 6174delT mutation were excluded. There was a lack of association of the KL-VS Klotho variant with either breast or ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.

Ovarian Cancer Susceptibility Alleles and Risk of Ovarian Cancer in BRCA1 and BRCA2 Mutation Carriers

Germline mutations in BRCA1 and BRCA2 are associated with increased risks of breast and ovarian cancer. A genome-wide association study (GWAS) identified six alleles associated with risk of ovarian cancer for women in the general population. We evaluated four of these loci as potential modifiers of ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Four SNPs, rs10088218 (at 8q24), rs2665390 (at 3q25), rs717852 (at 2q31) and rs9303542 (at 17q21), were genotyped in 12,599 BRCA1 and 7,132 BRCA2 carriers, including 2,678 ovarian cancer cases. Associations were evaluated within a retrospective cohort approach. All four loci were associated with ovarian cancer risk in BRCA2 carriers; rs10088218 per-allele hazard ratio (HR) = 0.81 (95%CI: 0.67-0.98) P-trend = 0.033, rs2665390 HR = 1.48 (95%CI: 1.21-1.83) P-trend = 1.8 × 10, rs717852 HR = 1.25 (95%CI: 1.10-1.42) P-trend = 6.6 × 10(-4) , rs9303542 HR = 1.16 (95%CI: 1.02-1.33) P-trend = 0.026. Two loci were associated with ovarian cancer risk in BRCA1 carriers; rs10088218 per-allele HR = 0.89 (95%CI: 0.81-0.99) P-trend = 0.029, rs2665390 HR = 1.25 (95%CI: 1.10-1.42) P-trend = 6.1 × 10(-4) . The HR estimates for the remaining loci were consistent with odds ratio estimates for the general population. The identification of multiple loci modifying ovarian cancer risk may be useful for counselling women with BRCA1 and BRCA2 mutations regarding their risk of ovarian cancer.

Association Between BRCA1 and BRCA2 Mutations and Survival in Women with Invasive Epithelial Ovarian Cancer

Approximately 10% of women with invasive epithelial ovarian cancer (EOC) carry deleterious germline mutations in BRCA1 or BRCA2. A recent article suggested that BRCA2-related EOC was associated with an improved prognosis, but the effect of BRCA1 remains unclear.

Progranulin (GP88) Tumor Tissue Expression is Associated with Increased Risk of Recurrence in Breast Cancer Patients Diagnosed with Estrogen Receptor Positive Invasive Ductal Carcinoma

ABSTRACT: GP88 (progranulin) has been implicated in tumorigenesis and resistance to anti-estrogen therapies for estrogen receptor positive (ER+) breast cancer. Previous pathological studies showed that GP88 is expressed in invasive ductal carcinoma (IDC), but not in normal mammary epithelial tissue, benign lesions or lobular carcinoma. Based on these results, the present study examines GP88 prognostic significance in association with recurrence and death risks for ER+ IDC patients. METHODS: Two retrospective multi-site clinical studies examined GP88 expression by immunohistochemistry (IHC) analysis of paraffin-embedded breast tumor tissue sections from ER+, IDC patients (lymph node positive and negative, stage 1 to 3) in correlation with patients' survival outcomes. The training study established a GP88 cut-off value associated with decreased disease-free (DFS) and overall (OS) survivals. The validation study verified the GP88 cut-off value and compared GP88 prognostic information with other prognostic factors, particularly tumor size, grade, disease stage and lymph node status in multivariate analysis. RESULTS: GP88 expression is associated with a statistically significant increase in recurrence risk for ER+ IDC patients. The training study established that GP88 3+ score was associated with decreased DFS (p=0.0004) and OS (p=0.0036). The independent validation study verified that GP88 3+ score was associated with a 5.9-fold higher hazard of disease recurrence and a 2.5-fold higher mortality hazard compared to patients with tumor GP88<3+. GP88 remained an independent risk predictor after considering age, ethnicity, nodal status, tumor size, tumor grade, disease stage, progesterone receptor expression and treatments. CONCLUSIONS: The survival factor GP88 is a novel prognostic biomarker, predictive of recurrence risk and increased mortality for non metastatic ER+ IDC patients. Of importance, our data show that GP88 continues to be a prognostic factor even after 5 years. These results also provide evidence that GP88 provides prognostic information independent of tumor and clinical characteristics and would support prospective study to examine whether GP88 expression could help stratify patients with ER+ tumors for adjuvant therapy.

19p13.1 is a Triple Negative-specific Breast Cancer Susceptibility Locus

The 19p13.1 breast cancer susceptibility locus is a modifier of breast cancer risk in BRCA1 mutation carriers and is also associated with risk of ovarian cancer. Here we investigated 19p13.1 variation and risk of breast cancer subtypes, defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2) status, using 48,869 breast cancer cases and 49,787 controls from the Breast Cancer Association Consortium (BCAC). Variants from 19p13.1 were not associated with breast cancer overall or with ER-positive breast cancer but were significantly associated with ER-negative breast cancer risk [rs8170 Odds Ratio (OR)=1.10, 95% Confidence Interval (CI) 1.05 - 1.15, p=3.49 x 10-5] and triple negative (TN) (ER, PR and HER2 negative) breast cancer [rs8170 OR=1.22, 95% CI 1.13 - 1.31, p=2.22 x 10-7]. However, rs8170 was no longer associated with ER-negative breast cancer risk when TN cases were excluded [OR=0.98, 95% CI 0.89 - 1.07, p=0.62]. In addition, a combined analysis of TN cases from BCAC and the Triple Negative Breast Cancer Consortium (TNBCC) (n=3,566) identified a genome-wide significant association between rs8170 and TN breast cancer risk [OR=1.25, 95% CI 1.18 - 1.33, p=3.31 x 10-13]. Thus, 19p13.1 is the first triple negative-specific breast cancer risk locus and the first locus specific to a histological subtype defined by ER, PR, and HER2 to be identified. These findings provide convincing evidence that genetic susceptibility to breast cancer varies by tumor subtype and that triple negative tumors and other subtypes likely arise through distinct etiologic pathways.

Waiting
simple hit counter