In JoVE (1)

Other Publications (37)

Articles by Aurel Radulescu in JoVE

 JoVE Bioengineering

Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

1Jülich Centre for Neutron Science Outstation at MLZ, Forschungszentrum Jülich GmbH, 2Department of Chemistry, Louisiana State University, 3Jülich Centre for Neutron Science JCNS-1 & Institute of Complex Systems ICS-1, Forschungszentrum Jülich GmbH, 4Central Institute of Engineering, Electronics and Analytics — Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 5Central Institute of Engineering, Electronics and Analytics — Engineering and Technology (ZEA-1), Forschungszentrum Jülich GmbH

JoVE 54639

Other articles by Aurel Radulescu on PubMed

Mesoscopic and Microscopic Investigation on Poly(vinyl Alcohol) Hydrogels in the Presence of Sodium Decylsulfate

The Journal of Physical Chemistry. B. Mar, 2007  |  Pubmed ID: 17295534

The structure of poly(vinyl alcohol) (PVA) hydrogels formed as a result of freeze/thaw treatments of aqueous solutions of the polymer (11 wt % PVA) in the freshly prepared state is analyzed through the combined use of small (SANS) and ultrasmall (USANS) angle neutron scattering techniques. The structure of these hydrogels may be described in terms of polymer rich regions, with dimensions of the order of 1-2 microm, dispersed in a water rich phase, forming two bicontinuous phases. The PVA chains in the polymer rich phase form a network where the cross-linking points are mainly crystalline aggregates of PVA having average dimensions of approximately 45 A. The structural organization of freeze/thaw PVA hydrogel membranes does not change either after rehydration of dried gels or in the presence of a tensile force. Finally, addition of surfactant micelles inside the gel provides a formulation with both hydrophobic and hydrophilic regions, which demonstrates the potential of the system for drug delivery. Both SANS and EPR measurements show that sodium decylsulfate (C10OS) micelles do not significantly interact with the PVA gel. Variation of the gel structure by the number of freeze/thaw cycles should modulate the rate of release of an active constituent, for example, in a dermal patch.

Peptides and Gd Complexes Containing Colloidal Assemblies As Tumor-specific Contrast Agents in MRI: Physicochemical Characterization

Biophysical Journal. Sep, 2007  |  Pubmed ID: 17483181

The aggregation behavior of an amphiphilic supramolecular system, with potential application as a tumor-specific magnetic resonance imaging contrast agent, has been studied in detail by dynamic light scattering, small-angle neutron scattering and cryotransmission electron microscopy. The system was constituted of mixed aggregates formed by an anionic unimer containing the DTPAGlu, a chelating agent for the paramagnetic Gd(3+) ion, and an uncharged unimer containing the bioactive peptide CCK8, capable of directing the assembly toward tumor cells. Mixed aggregates formed by both unimers, and in the case of the DTPAGlu unimer with the chelating agent as free base or as Gd(3+) complex, have been investigated. A number of interesting features of the aggregation behavior were revealed: at physiological pH, micelles and bilayer structures were present, whereas upon decreasing solution pH or increasing ionic strength, the formation of bilayer structures was favored. On the basis of the above observations, the aggregating mechanism has been elucidated by considering the screening effect on intra- and interaggregate electrostatic repulsions.

Self-assembled Nanoparticles from a Block Polyelectrolyte in Aqueous Media: Structural Characterization by SANS

The Journal of Physical Chemistry. B. Jun, 2010  |  Pubmed ID: 20481490

We present a small angle neutron scattering (SANS) study of polystyrene-b-sodium (sulfamate/carboxylate) isoprene (PS-PSCI) nanoparticles in aqueous media. The SANS experiments are complemented by static and dynamic light scattering measurements. A detailed analysis of the scattering form factor obtained by SANS for the self-assembled block polyelectrolyte spherical nanoparticles implies a two-region power-law model for the radial volume fraction profiles. The theoretically predicted scaling of the osmotic brush regime phi(r) approximately r(-2) for the inner region and the osmotic annealing brush regime phi(r) approximately r(-8/3) for the outer region are in agreement with our experimental findings. A concentrated shell of PSCI polyelectrolyte chains collapsed on the polystyrene core is needed in the form factor analysis so that the aggregation number of the nanoparticles is self-consistent. The self-assembled nanoparticles are found to be kinetically frozen i.e. their aggregation number is not sensitive to the solution conditions and is defined by the preparation protocol. The size of the spherical nanoparticles tends to decrease upon the addition of salt and the drop of pH.

Peptide Modified Nanocarriers for Selective Targeting of Bombesin Receptors

Molecular BioSystems. May, 2010  |  Pubmed ID: 20567774

The present work describes new supramolecular aggregates obtained by co-assembling two different amphiphilic molecules, one containing the bioactive bombesin peptide (BN), or a scramble sequence, and the other, the DOTA chelating agent, (C18)(2)DOTA, capable of forming stable complexes with the radioactive (111)In(III) isotope. The peptide in the amphiphilic monomer is spaced by the lipophilic moiety through ethoxylic spacers of different length: a shorter spacer with five units of dioxoethylene moieties in (C18)(2)L5-peptide, or a longer spacer consisting of a Peg3000 residue in (C18)(2)Peg3000-peptide. Structural characterization by SANS and DLS techniques indicates that, independently from the presence of the peptide containing monomer in the final composition, the predominant aggregates are liposomes of similar shape and size with a hydrodynamic radius R(h) around 200 nm and bilayer thickness, d, of 4 nm. In vitro data show specific binding of the (111)In-(C18)(2)DOTA/(C18)(2)L5-[7-14]BN 90:10 liposomes in receptor expressing cells. However, the presence of the Peg3000 unit on the external liposomal surface, could hide the peptide and prevent the receptor binding. In vivo experiments using (111)In-(C18)(2)DOTA/(C18)(2)L5-[7-14]BN show the expected biological behavior of aggregates of such size and molecular composition, moreover there is an increase in concentration of the GRPR targeting aggregate in the tumors compared to control at the 48 h time point evaluated (2.4% ID/g versus 1.6% ID/g).

Characterization of Liposomes Formed by Lipopolysaccharides from Burkholderia Cenocepacia, Burkholderia Multivorans and Agrobacterium Tumefaciens: from the Molecular Structure to the Aggregate Architecture

Physical Chemistry Chemical Physics : PCCP. Nov, 2010  |  Pubmed ID: 20852798

The microstructure of liposomes formed by the lipopolysaccharides (LPS) derived from Burkholderia cenocepacia ET-12 type strain LMG 16656, Burkholderia multivorans strain C1576 and Agrobacterium tumefaciens strain TT111 has been investigated by a combined experimental strategy, including dynamic light scattering (DLS), small-angle neutron scattering (SANS) and electron paramagnetic resonance (EPR). The results highlight that the LPS molecular structure determines, through a complex interplay of hydrophobic, steric and electrostatic interactions, the morphology of the aggregates formed in aqueous medium. All the considered LPS form liposomes that in most cases present a multilamellar arrangement. The thickness of the hydrophobic domain of each bilayer and the local ordering of the acyl chains are determined not only by the molecular structure of the LPS glycolipid portion (lipid A), but also, indirectly, by the bulkiness of the saccharidic portion. In the case of a long polysaccharidic chain, such as that of the LPS derived from Burkholderia multivorans, liposomes coexist with elongated micellar aggregates, whose population decreases if a typical phospholipid, such as dioleoyl phosphatidylethanolamine (DOPE) is introduced in the liposome formulation. The effect of temperature has also been considered: for all the considered LPS an extremely smooth transition of the acyl chain self-organization from a gel to a liquid crystalline phase is detected around 30-35 °C. In the biological context, our results suggest that the rich biodiversity of LPS molecular structure could be fundamental to finely tune the structure and functional properties of the outer membrane of Gram negative bacteria.

Nanostructuring of CyPLOS (Cyclic Phosphate-Linked OligoSaccharides), Novel Saccharide-based Synthetic Ion Transporters

Journal of Colloid and Interface Science. Feb, 2011  |  Pubmed ID: 21111429

Ionophores are an important class of synthetic molecules which mimic natural ion channels or carriers. Here we report the aggregation behavior in pseudo-physiological environment of three Cyclic Phosphate-Linked Oligosaccharides (CyPLOS) derivatives, synthetic ion transporters based on cyclic, phosphate-linked disaccharide skeleton differing for the nature of the tails (tetraethylene-TEG glycol and/or n-undecyl chains) attached to the C-2 and C-3 of the constitutive monosaccharides. Their aggregation behavior has been studied by a combined use of dynamic light scattering (DLS), electron paramagnetic resonance spectroscopy (EPR) and Small Angle Neutron Scattering (SANS). DLS measurements were performed to reveal the formation and size distribution of the CyPLOS aggregates. EPR measurements, by using 5-doxyl stearic acid (5-DSA) as spin-probe, showed that the aggregates are mainly due to the formation of double layers and allowed to analyze the local fluidity. Finally, SANS measurements allowed estimating the layer thickness of the double layers. Our results indicate that the three CyPLOS analogs show self-aggregation properties that depend on the different nature of the inserted tails.

Interactions Between Block Copolymers and Single-walled Carbon Nanotubes in Aqueous Solutions: a Small-angle Neutron Scattering Study

Langmuir : the ACS Journal of Surfaces and Colloids. Jan, 2011  |  Pubmed ID: 21155544

The amphiphilic copolymers of the Pluronic family are known to be excellent dispersants for single-walled carbon nanotubes (SWCNT) in water, especially F108 and F127, which have rather long end-blocks of poly(ethylene oxide) (PEO). In this study, the structure of the CNT/polymer hybrid formed in water is evaluated by measurements of small-angle neutron scattering (SANS) with contrast variation, as supported by cryo-transmission electron microscopy (cryo-TEM) imaging. The homogeneous, stable, inklike dispersions exhibited very small isolated bundles of carbon nanotubes in cryo-TEM images. SANS experiments were conducted at different D(2)O/H(2)O content of the dispersing solvent. The data for both systems showed surprisingly minimal intensity values at 70% D(2)O solvent composition, which is much higher than the expected value of 17% D(2)O that is based on the scattering length density (SLD) of PEO. At this near match point, the data exhibited a q(-1) power law relation of intensity to the scattering vector (q), indicating rodlike entities. Two models are evaluated, as extensions to Pederson's block copolymer micelles models. One is loosely adsorbed polymer chains on a rodlike CNT bundle. In the other, the hydrophobic block is considered to form a continuous hydrated shell on the CNT surface, whereas the hydrophilic blocks emanate into the solvent. Both models were found to fit the experimental data reasonably well. The model fit required special considerations of the tight association of water molecules around PEO chains and slight isotopic selectivity.

Nanoparticles Containing Octreotide Peptides and Gadolinium Complexes for MRI Applications

Journal of Peptide Science : an Official Publication of the European Peptide Society. Feb, 2011  |  Pubmed ID: 21234988

New mixed nanoparticles were obtained by self-aggregation of two amphiplic monomers. The first monomer (C18)(2) L5-Oct contains two C18 hydrophobic moieties bound to the N-terminus of the cyclic peptide octreotide, and spaced from the bioactive peptide by five units of dioxoethylene linkers. The second monomer, (C18)(2) DTPAGlu, (C18)(2) DTPA or (C18)(2) DOTA, and the corresponding Gd(III) complexes, contains two C18 hydrophobic moieties bound through a lysine residue to different polyamino-polycarboxy ligands: DTPAGlu, DTPA or DOTA. Mixed aggregates have been obtained and structurally characterized by small angle neutron scattering (SANS) techniques and for their relaxometric behavior. According to a decrease of negative charges in the surfactant head-group, a total or a partial micelle-to-vesicle transition is observed by passing from (C18)(2) DTPAGlu to (C18)(2) DOTA. The thicknesses of the bilayers are substantially constant, around 50 Å, in the analyzed systems. Moreover, the mixed aggregates, in which a small amount of amphiphilic octreotide monomer (C18)(2) L5-Oct (10% mol/mol) was inserted, do not differ significantly from the respective self-assembled systems. Fluorescence emission of tryptophan residue at 340 nm indicates low mobility of water molecules at the peptide surface. The proton relaxivity of mixed aggregates based on (C18)(2) DTPAGlu(Gd), (C18)(2) DTPA(Gd) and (C18)(2) DOTA(Gd) resulted to be 17.6, 15.2 and 10.0 mM(-1) s(-1) (at 20 MHz and 298K), respectively. The decrease in the relaxivity values can be ascribed to the increase in τ(M) (81, 205 and 750 ns). The presence of amphiphilic octreotide monomer exposed on mixed aggregate surface gives the entire nanoparticles a potential binding selectivity toward somatostatin sstr2 receptor subtype, and these systems could act as MRI target-specific contrast agent.

Ruthenium-based Complex Nanocarriers for Cancer Therapy

Biomaterials. May, 2012  |  Pubmed ID: 22357152

A new organometallic ruthenium complex, named AziRu, along with three amphiphilic nucleoside-based ruthenium complexes, ToThyRu, HoThyRu and DoHuRu, incorporating AziRu in their skeleton, have been synthesized, stabilized in POPC phospholipid formulations and studied for their antineoplastic activity. Self-aggregation behavior of these complexes was investigated, showing that the three synthesized AziRu derivatives able to form liposomes and, under specific conditions, elongated micelles. The formulations prepared in POPC proved to be stable for months and showed high in vitro antiproliferative activity. The here described results open new scenarios in the design of innovative transition metal-based supramolecular systems for anticancer drugs vectorization.

Eumelanin Buildup on the Nanoscale: Aggregate Growth/assembly and Visible Absorption Development in Biomimetic 5,6-dihydroxyindole Polymerization

Biomacromolecules. Aug, 2012  |  Pubmed ID: 22651227

Establishing structure-property relationships in the black insoluble eumelanins, the key determinants of human pigmentation and skin photoprotective system, is a considerable conceptual and experimental challenge in the current drive for elucidation of the biological roles of these biopolymers and their application as advanced materials for organoelectronics. Herein, we report a new breakthrough toward this goal by the first detailed investigation on the nanoscale level of the oxidative polymerization of 5,6-dihydroxyindole (DHI), a model process of eumelanin synthesis. On the basis of a combined use of spectrophotometry, dynamic light scattering (DLS), and small-angle neutron scattering (SANS) investigations, it was possible to unveil the dynamics of the aggregation process before precipitation, the key relationships with visible light absorption and the shape of fundamental aggregates. The results indicated a polymerization mechanism of the type: Polymer(n) + DHI(x) = Polymer(n+x), where DHI(x) indicates monomer, dimer, or low oligomers (x ≤ 5). During polymerization, visible absorption increases rapidly, reaching a plateau. Particle growth proceeds slowly, with formation of 2-D structures ~55 nm thick, until precipitation occurs, that is, when large aggregates with a maximum hydrodynamic radius (R(h)) of ~1200 nm are formed. Notably, markedly smaller R(h) values, up to ~110 nm, were determined in the presence of poly(vinyl alcohol) (PVA) that was shown to be an efficient aggregation-preventing agent for polymerizing DHI ensuring water solubilization. Finally, it is shown that DHI monomer can be efficiently and partially irreversibly depleted from aqueous solutions by the addition of eumelanin suspensions. This behavior is suggested to reflect oxidant-independent competing pathways of polymer synthesis and buildup via monomer conversion on the active aggregate surface contributing to particle growth. Besides filling crucial gaps in DHI polymerization, these results support the attractive hypothesis that eumelanins may behave as a peculiar example of living biopolymers. The potential of PVA as a powerful tool for solution chemistry-based investigations of eumelanin supramolecular organization and for technological manipulation purposes is underscored.

Small-angle Neutron Scattering from Aqueous Dispersions of Single-walled Carbon Nanotubes with Pluronic F127 and Poly(vinylpyrrolidone)

Langmuir : the ACS Journal of Surfaces and Colloids. Jul, 2012  |  Pubmed ID: 22762521

Amphiphilic block copolymers are excellent dispersants for single-walled carbon nanotubes (SWCNT) in aqueous environments, where their noncovalent attachments do not affect the π chemical bonding. In this small-angle neutron scattering (SANS) study, we investigate whether the coverage of Pluronic F127 polymers around the CNTs depends on the solution concentration in the range of 1-6% (w/w). The observations indicate that at these concentrations the SWCNT surface is fully saturated at about 14 chains per unit length of 100 Å. Furthermore, we seek to verify whether the unusual effect observed in a previous study by contrast variation, interpreted as being due to a dense hydration layer around the polymer chains, also appears using a homopolymer (polyvinylpyrrolidone - PVP) that does not contain poly(ethylene oxide) (PEO) units. The SANS patterns showed again a minimal intensity value at much higher solvent composition (75% D(2)O) than the expected value of 29% D(2)O. The minimum scattering curve exhibited a nearly q(-1) power law at small angles, an indication of rodlike entities. A model of a CNT thin bundle with loosely adsorbed polymer chains around it (core-chains) was reasonably well fitted to the data. The polymer chains are assumed to be surrounded by a water layer with a slightly higher density than bulk water, having partial selectivity for D(2)O.

Patchy Worm-like Micelles: Solution Structure Studied by Small-angle Neutron Scattering

Physical Chemistry Chemical Physics : PCCP. Oct, 2012  |  Pubmed ID: 22880203

Triblock terpolymers exhibit a rich self-organization behavior including the formation of fascinating cylindrical core-shell structures with a phase separated corona. After crystallization-induced self-assembly of polystyrene-block-polyethylene-block-poly(methyl methacrylate) triblock terpolymers (abbreviated as SEMs = Styrene-Ethylene-Methacrylates) from solution, worm-like core-shell micelles with a patchy corona of polystyrene and poly(methyl methacrylate) were observed by transmission electron microscopy. However, the solution structure is still a matter of debate. Here, we present a method to distinguish in situ between a Janus-type (two faced) and a patchy (multiple compartments) configuration of the corona. To discriminate between both models the scattering intensity must be determined mainly by one corona compartment. Contrast variation in small-angle neutron scattering enables us to focus on one compartment of the worm-like micelles. The results validate the existence of the patchy structure also in solution.

Anticancer Cationic Ruthenium Nanovectors: from Rational Molecular Design to Cellular Uptake and Bioactivity

Biomacromolecules. Aug, 2013  |  Pubmed ID: 23705931

An efficient drug delivery strategy is presented for novel anticancer amphiphilic ruthenium anionic complexes, based on the formation of stable nanoparticles with the cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP). This strategy is aimed at ensuring high ruthenium content within the formulation, long half-life in physiological media, and enhanced cell uptake. An in-depth microstructural characterization of the aggregates obtained mixing the ruthenium complex and the phospholipid carrier at 50/50 molar ratio is realized by combining a variety of techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), neutron reflectivity (NR), electron paramagnetic resonance (EPR), and zeta potential measurements. The in vitro bioactivity profile of the Ru-loaded nanoparticles is investigated on human and non-human cancer cell lines, showing IC(50) values in the low μM range against MCF-7 and WiDr cells, that is, proving to be 10-20-fold more active than AziRu, a previously synthesized NAMI-A analog, used for control. Fluorescence microscopy studies demonstrate that the amphiphilic Ru-complex/DOTAP formulations, added with rhodamine-B, are efficiently and rapidly incorporated in human MCF-7 breast adenocarcinoma cells. The intracellular fate of the amphiphilic Ru-complexes was investigated in the same in vitro model by means of an ad hoc designed fluorescently tagged analog, which exhibited a marked tendency to accumulate within or in proximity of the nuclei.

Structural Characterization of the Phospholipid Stabilizer Layer at the Solid-liquid Interface of Dispersed Triglyceride Nanocrystals with Small-angle X-ray and Neutron Scattering

Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics. Jun, 2013  |  Pubmed ID: 23848684

Dispersions of crystalline nanoparticles with at least one sufficiently large unit cell dimension can give rise to Bragg reflections in the small-angle scattering range. If the nanocrystals possess only a small number of unit cells along these particular crystallographic directions, the corresponding Bragg reflections will be broadened. In a previous study of phospholipid stabilized dispersions of β-tripalmitin platelets [Unruh, J. Appl. Crystallogr. 40, 1008 (2007)], the x-ray powder pattern simulation analysis (XPPSA) was developed. The XPPSA method facilitates the interpretation of the rather complicated small-angle x-ray scattering (SAXS) curves of such dispersions of nanocrystals. The XPPSA method yields the distribution function of the platelet thicknesses and facilitates a structural characterization of the phospholipid stabilizer layer at the solid-liquid interface between the nanocrystals and the dispersion medium from the shape of the broadened 001 Bragg reflection. In this contribution an improved and extended version of the XPPSA method is presented. The SAXS and small-angle neutron scattering patterns of dilute phospholipid stabilized tripalmitin dispersions can be reproduced on the basis of a consistent simulation model for the particles and their phospholipid stabilizer layer on an absolute scale. The results indicate a surprisingly flat arrangement of the phospholipid molecules in the stabilizer layer with a total thickness of only 12 Å. The stabilizer layer can be modeled by an inner shell for the fatty acid chains and an outer shell including the head groups and additional water. The experiments support a dense packing of the phospholipid molecules on the nanocrystal surfaces rather than isolated phospholipid domains.

Hydrolytically Degradable Polymer Micelles for Drug Delivery: a SAXS/SANS Kinetic Study

Biomacromolecules. Nov, 2013  |  Pubmed ID: 24083567

We report kinetic studies of therapeutically highly potent polymer-drug conjugates consisting of amphiphilic N-(2-hydroxypropyl) methacrylamide (HPMA)-based copolymers bearing the anticancer drug doxorubicin (Dox). Highly hydrophobic cholesterol moieties as well as the drug were attached to the polymer backbone by a pH-sensitive hydrazone bond. Moreover, the structure of the spacer between the polymer carrier and the cholesterol moiety differed in order to influence the release rate of the hydrophobic moiety, and thus the disintegration of the high-molecular-weight micellar nanoparticle structure. We performed time-dependent SAXS/SANS measurements after changing pH from a typical blood value (pH 7.2) to that of tumor cells (pH 5.0) to characterize the drug release and changes in particle size and shape. Nanoparticles composed of the conjugates containing Dox were generally larger than the drug-free ones. For most conjugates, nanoparticle growth or decay was observed in the time range of several hours. It was established that the growth/decay rate and the steady-state size of nanoparticles depend on the spacer structure. From analytical fitting, we conclude that the most probable structure of the nanoparticles was a core-shell or a core with attached Gaussian chains. We concluded that the spacer structure determined the fate of a cholesterol derivative after the pH jump. Fitting results for 5α-cholestan-3-onecholestan-3-one and cholesteryl-4-oxopentanoate (Lev-chol) implied that cholesterol moieties continuously escape from the core of the nanoparticle core and concentrate in the hydrophilic shell. In contrast, cholest-4-en-3-one spacer prevent cholesterol escaping. Dox moiety release was only observed after a change in pH. Such findings justify the model proposed in our previous paper. Lastly, the cholesteryl 4-(2-oxopropyl)benzoate (Opb-Chol) was a different case where after the release of hydrophobic Opb-Chol moieties, the core becomes more compact. The physicochemical mechanisms responsible for the scenarios of the different spacers are discussed.

Structure of RecX Protein Complex with the Presynaptic RecA Filament: Molecular Dynamics Simulations and Small Angle Neutron Scattering

FEBS Letters. Mar, 2014  |  Pubmed ID: 24530684

Using molecular modeling techniques we have built the full atomic structure and performed molecular dynamics simulations for the complexes formed by Escherichia coli RecX protein with a single-stranded oligonucleotide and with RecA presynaptic filament. Based on the modeling and SANS experimental data a sandwich-like filament structure formed two chains of RecX monomers bound to the opposite sides of the single stranded DNA is proposed for RecX::ssDNA complex. The model for RecX::RecA::ssDNA include RecX binding into the grove of RecA::ssDNA filament that occurs mainly via Coulomb interactions between RecX and ssDNA. Formation of RecX::RecA::ssDNA filaments in solution was confirmed by SANS measurements which were in agreement with the spectra computed from the molecular dynamics simulations.

Compact Structure and Non-Gaussian Dynamics of Ring Polymer Melts

Soft Matter. May, 2014  |  Pubmed ID: 24667976

We present a neutron scattering analysis of the structure and dynamics of PEO polymer rings with a molecular weight 2.5 times higher than the entanglement mass. The melt structure was found to be more compact than a Gaussian model would suggest. With increasing time the center of mass (c.o.m.) diffusion undergoes a transition from sub-diffusive to diffusive behavior. The transition time agrees well with the decorrelation time predicted by a mode coupling approach. As a novel feature well pronounced non-Gaussian behavior of the c.o.m. diffusion was found that shows surprising analogies to the cage effect known from glassy systems. Finally, the longest wavelength Rouse modes are suppressed possibly as a consequence of an onset of lattice animal features as hypothesized in theoretical approaches.

Internal Nanosecond Dynamics in the Intrinsically Disordered Myelin Basic Protein

Journal of the American Chemical Society. May, 2014  |  Pubmed ID: 24758710

Intrinsically disordered proteins lack a well-defined folded structure and contain a high degree of structural freedom and conformational flexibility, which is expected to enhance binding to their physiological targets. In solution and in the lipid-free state, myelin basic protein belongs to that class of proteins. Using small-angle scattering, the protein was found to be structurally disordered similar to Gaussian chains. The combination of structural and hydrodynamic information revealed an intermediary compactness of the protein between globular proteins and random coil polymers. Modeling by a coarse-grained structural ensemble gave indications for a compact core with flexible ends. Neutron spin-echo spectroscopy measurements revealed a large contribution of internal dynamics to the overall diffusion. The experimental results showed a high flexibility of the structural ensemble. Displacement patterns along the first two normal modes demonstrated that collective stretching and bending motions dominate the internal modes. The observed dynamics represent nanosecond conformational fluctuations within the reconstructed coarse-grained structural ensemble, allowing the exploration of a large configurational space. In an alternative approach, we investigated if models from polymer theory, recently used for the interpretation of fluorescence spectroscopy experiments on disordered proteins, are suitable for the interpretation of the observed motions. Within the framework of the Zimm model with internal friction (ZIF), a large offset of 81.6 ns is needed as an addition to all relaxation times due to intrachain friction sources. The ZIF model, however, shows small but systematic deviations from the measured data. The large value of the internal friction leads to the breakdown of the Zimm model.

Inner Structure of Adsorbed Ionic Microgel Particles

Langmuir : the ACS Journal of Surfaces and Colloids. Jun, 2014  |  Pubmed ID: 24920223

Microgel particles of cross-linked poly(NIPAM-co-acrylic acid) with different acrylic acid contents are investigated in solution and in the adsorbed state. As a substrate, silicon with a poly(allylamine hydrochloride) (PAH) coating is used. The temperature dependence of the deswelling of the microgel particles was probed with atomic force microscopy (AFM). The inner structure of the adsorbed microgel particles was detected with grazing incidence small angle neutron scattering (GISANS). Small angle neutron scattering (SANS) on corresponding microgel suspensions was performed for comparison. Whereas the correlation length of the polymer network shows a divergence in the bulk samples, in the adsorbed microgel particles it remains unchanged over the entire temperature range. In addition, GISANS indicates changes in the particles along the surface normal. This suggests that the presence of a solid surface suppresses the divergence of internal fluctuations in the adsorbed microgels close to the volume phase transition.

Mesoscopic Structures of Triglyceride Nanosuspensions Studied by Small-angle X-ray and Neutron Scattering and Computer Simulations

The Journal of Physical Chemistry. B. Jul, 2014  |  Pubmed ID: 24950992

Aqueous suspensions of platelet-like shaped tripalmitin nanocrystals are studied here at high tripalmitin concentrations (10 wt % tripalmitin) for the first time by a combination of small-angle X-ray and neutron scattering (SAXS and SANS). The suspensions are stabilized by different lecithins, namely, DLPC, DOPC, and the lecithin blend S100. At such high concentrations the platelets start to self-assemble in stacks, which causes interference maxima at low Q-values in the SAXS and SANS patterns, respectively. It is found that the stack-related interference maxima are more pronounced for the suspension stabilized with DOPC and in particular DLPC, compared to suspensions stabilized by S100. By use of the X-ray and neutron powder pattern simulation analysis (XNPPSA), the SAXS and SANS patterns of the native tripalmitin suspensions could only be reproduced simultaneously when assuming the presence of both isolated nanocrystals and stacks of nanocrystals of different size in the simulation model of the dispersions. By a fit of the simulated SAXS and SANS patterns to the experimental data, a distribution of the stack sizes and their volume fractions is determined. The volume fraction of stacklike platelet assemblies is found to rise from 70% for S100-stabilized suspensions to almost 100% for the DLPC-stabilized suspensions. The distribution of the platelet thicknesses could be determined with molecular resolution from a combined analysis of the SAXS and SANS patterns of the corresponding diluted tripalmitin (3 wt %) suspensions. In accordance with microcalorimetric data, it could be concluded that the platelets in the suspensions stabilized with DOPC, and in particular DLPC, are significantly thinner than those stabilized with S100. The DLPC-stabilized suspensions exhibit a significantly narrower platelet thickness distribution compared to DOPC- and S100-stabilized suspensions. The smaller thicknesses for the DLPC- and DOPC-stabilized platelets explain their higher tendency to self-assemble in stacks. The finding that the nanoparticles of the suspension stabilized by the saturated lecithin DLPC crystallize in the stable β-tripalmitin modification with its characteristic platelet-like shape is surprising and can be explained by the fact that the main phase transformation temperature for DLPC is, as for unsaturated lecithins like DOPC and S100, well below the crystallization temperature of the supercooled tripalmitin emulsion droplets.

Plasmonic Gold-poly(N-isopropylacrylamide) Core-shell Colloids with Homogeneous Density Profiles: a Small Angle Scattering Study

Physical Chemistry Chemical Physics : PCCP. Jan, 2015  |  Pubmed ID: 25425290

Coating metal nanocrystals with responsive polymers provides a model case of smart, functional materials, where the optical properties can be modulated by external stimuli. However the optical response is highly sensitive to the polymer shell morphology, thickness and dielectric contrast. In this paper we study the nature of cross-linked, thermoresponsive polymer shells for the first time using four different scattering approaches to elucidate the density profile of the shells. Each scattering method provides unique information about the temperature-induced changes of shell thickness in terms of hydrodynamic radius and radius of gyration, the pair-distance distribution functions of the shells as well as the dynamic network fluctuations. Only a combination of these different scattering techniques allows to develop a morphological model of the core-shell particles. We further demonstrate control of the cross-linker distribution in core-shell synthesis by semi-batch precipitation copolymerization. Conducting the polymerization in three steps, we show for the first time that the polymer shell thickness can be successively increased without affecting the shell morphology and response behavior.

Developing Functionalized Fe3O4-Au Nanoparticles: a Physico-chemical Insight

Physical Chemistry Chemical Physics : PCCP. Feb, 2015  |  Pubmed ID: 25645178

Nanotechnology for biomedicine has recently attracted increasing interest from the scientific community. In particular, among the different nanodevices suitable for this application, multifunctionalizable hybrid nanoparticles are one of the most investigated research topics. Here we present a detailed physico-chemical characterization of hybrid magneto-plasmonic iron oxide-gold nanoparticles (NPs) with core-shell structure. In particular, we underline all the synthetic difficulties concerning the preparation of these systems. Based on all our results, after different tests of a commonly reported protocol for the synthesis of the core-shell system, we believe that several issues are still open in the synthetic preparation of these particular NPs. Indeed, at least for the conditions that we adopted, core-shell morphology nanoparticles cannot be produced. However, independent of the core structure, we describe here an optimized and efficient functionalization protocol to obtain stable nanoparticle aqueous suspensions, which can be easily exported to other kinds of metal and metal-oxide NPs and used to develop biocompatible systems. Furthermore, reliable information that could be useful for researchers working in this field is extensively discussed.

Using Inclusion Complexes with Cyclodextrins to Explore the Aggregation Behavior of a Ruthenium Metallosurfactant

Langmuir : the ACS Journal of Surfaces and Colloids. Mar, 2015  |  Pubmed ID: 25672530

The aggregation behavior of a chiral metallosurfactant, bis(2,2'-bipyridine)(4,4'-ditridecyl-2,2'-bipyridine)ruthenium(II) dichloride (Ru2(4)C13), synthesized as a racemic mixture was characterized by small-angle neutron scattering, light scattering, NMR, and electronic spectroscopies. The analysis of the SANS data indicates that micelles are prolate ellipsoids over the range of concentrations studied, with a relatively low aggregation number, and the micellization takes place gradually with increasing concentration. The presence of cyclodextrins (β-CD and γ-CD) induces the breakup of the micelles and helps to establish that micellization occurs at a very slow exchange rate compared to the NMR time scale. The open structure of this metallosurfactant enables the formation of very stable complexes of 3:1 stoichiometry, in which one CD threads one of the hydrocarbon tails and two CDs the other, in close contact with the polar head. The complex formed with β-CD, more stable than the one formed with the wider γ-CD, is capable of resolving the Δ and Λ enantiomers at high CD/surfactant molar ratios. The chiral recognition is possible due to the very specific interactions taking place when the β-CD covers-via its secondary rim-part of the diimine moiety connected to the hydrophobic tails. A SANS model comprising a binary mixture of hard spheres (complex + micelles) was successfully used to study quantitatively the effect of the CDs on the aggregation of the surfactant.

Modulating the Self-assembly of Amphiphilic X-shaped Block Copolymers with Cyclodextrins: Structure and Mechanisms

Langmuir : the ACS Journal of Surfaces and Colloids. Apr, 2015  |  Pubmed ID: 25785814

Inclusion complexes between cyclodextrins and polymers-so-called pseudopolyrotaxanes (PPR)-are at the origin of fascinating supramolecular structures, which are finding increasing uses in biomedical and technological fields. Here we explore the impact of both native and a range of modified cyclodextrins (CD) on the self-assembly of X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers, so-called Tetronics or poloxamines, by focusing on Tetronic 904 (T904, Mw 6700). The effects are markedly dependent on the type and arrangement of the substituents on the macrocycle. While native CDs drive the formation of a solid PPR, most substituted CDs induce micellar breakup, with dimethylated β-CD (DIMEB) having the strongest impact and randomly substituted CDs a much weaker disruptive effect. Using native α-CD as a "molecular trap", we perform competitive binding experiments-where two types of CDs thread together onto the polymer chains-to establish that DIMEB indeed has the highest propensity to form an inclusion complex with the polymer, while hydroxypropylated CDs do not thread. 1D (1)H NMR and ROESY experiments confirm the formation of a soluble PPR with DIMEB in which the CD binds preferentially to the PO units, thus providing the drive for the observed demicellization. A combination of dynamic light scattering (DLS) and small-angle neutron scattering (SANS) is used to extract detailed structural parameters on the micelles. A binding model is proposed, which exploits the chemical shifts of selected protons from the CD in conjunction with the Hill equation, to prove that the formation of the PPR is a negatively cooperative process, in which threaded DIMEBs hamper the entrance of subsequent macrocycles.

The Role of Solvent Swelling in the Self-assembly of Squalene Based Nanomedicines

Soft Matter. Jun, 2015  |  Pubmed ID: 25873336

Squalene based nanoparticles obtained via nanoprecipitation are promising candidates as efficient anti-cancer drugs. In order to highlight their preparation process and to facilitate further clinical translation, the present study enlightens the paramount role of the solvent in the formation of these nanomedicines. Three different squalene-based nanoparticles, i.e. squalenic acid, deoxycytidine squalene and gemcitabine squalene, have been investigated before and after organic solvent evaporation. Size and structural analysis by Small Angle Neutron Scattering revealed that droplets' size was uniquely controlled by the solvent composition (ethanol-water), which evolved during their gradual formation. The particles were preferably swollen by water and the swelling increased when less ethanol was present. Either coalescence or fragmentation was observed depending on the increase or decrease of the ethanol content, supporting an equilibrium control of the size. Moreover, a high water swelling was observed for the three local organization of the nanodroplets (hexagonal for gemcitabine squalene, cubic for deoxycytidine and not structured for squalenic acid) and could be the source of the previously reported efficiency of related anti-cancer squalene based nanomedicines.

Studying the Concentration Dependence of the Aggregation Number of a Micellar Model System by SANS

Soft Matter. Jun, 2015  |  Pubmed ID: 25892401

We present a small-angle neutron scattering (SANS) structural characterization of n-alkyl-PEO polymer micelles in aqueous solution with special focus on the dependence of the micellar aggregation number on increasing concentration. The single micellar properties in the dilute region up to the overlap concentration ϕ* are determined by exploiting the well characterized unimer exchange kinetics of the model system in a freezing and diluting experiment. The micellar solutions are brought to thermodynamic equilibrium at high temperatures, where unimer exchange is fast, and are then cooled to low temperatures and diluted to concentrations in the limit of infinite dilution. At low temperatures the kinetics, and therefore the key mechanism for micellar rearrangement, is frozen on the experimental time scale, thus preserving the micellar structure in the dilution process. Information about the single micellar structure in the semidilute and concentrated region are extracted from structure factor analysis at high concentrations where the micelles order into fcc and bcc close packed lattices and the aggregation number can be calculated by geometrical arguments. This approach enables us to investigate the aggregation behavior in a wide concentration regime from dilute to 6·ϕ*, showing a constant aggregation number with concentration over a large concentration regime up to a critical concentration about three times ϕ*. When exceeding this critical concentration, the aggregation number was found to increase with increasing concentration. This behavior is compared to scaling theories for star-like polymer micelles.

Selective Tuning of the Self-assembly and Gelation of a Hydrophilic Poloxamine by Cyclodextrins

Langmuir : the ACS Journal of Surfaces and Colloids. May, 2015  |  Pubmed ID: 25938931

Complexes formed between cyclodextrins (CDs) and polymers - pseudopolyrotaxanes (PPRs) - are the starting point of a multitude of supramolecular structures, which are proposed for a wide range of biomedical and technological applications. In this work, we investigate the complexation of a range of cyclodextrins with Tetronic T1307, a four-arm block copolymer of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) with a pH-responsive central ethylene diamine spacer, and its impact on micellization and the sol-gel transition. At low concentrations, small-angle neutron scattering (SANS) combined with dynamic light scattering (DLS) measurements show the presence of spherical micelles with a highly hydrated shell and a dehydrated core. Increasing the temperature leads to more compact micelles and larger aggregation numbers, whereas acidic conditions induce a shrinking of the micelles, with fewer unimers per micelle and a more hydrated corona. At high concentrations, T1307 undergoes a sol-gel transition, which is suppressed at pH below the pKa,1 (4.6). SANS data analysis reveals that the gels result from a random packing of the micelles, which have an increasing aggregation number and increasingly dehydrated shell and hydrated core with the temperature. Native CDs (α, β, γ-CD) can complex T1307, resulting in the precipitation of a PPR. Instead, modified CDs compete with micellization to an extent that is critically dependent on the nature of the substitution. (1)H and ROESY NMR combined with SANS demonstrate that dimethylated β-CD can thread onto the polymer, preferentially binding to the PO units, thus hindering self-aggregation by solubilizing the hydrophobic block. The various CDs are able to modulate the onset of gelation and the extent of the gel phase, and the effect correlates with the ability of the CDs to disrupt the micelles, with the exception of a sulfated sodium salt of β-CD, which, while not affecting the CMT, is able to fully suppress the gel phase.

Dynamic Phase Diagram of Soft Nanocolloids

Nanoscale. Sep, 2015  |  Pubmed ID: 26219628

We present a comprehensive experimental and theoretical study covering micro-, meso- and macroscopic length and time scales, which enables us to establish a generalized view in terms of structure-property relationship and equilibrium dynamics of soft colloids. We introduce a new, tunable block copolymer model system, which allows us to vary the aggregation number, and consequently its softness, by changing the solvophobic-to-solvophilic block ratio (m : n) over two orders of magnitude. Based on a simple and general coarse-grained model of the colloidal interaction potential, we verify the significance of interaction length σint governing both structural and dynamic properties. We put forward a quantitative comparison between theory and experiment without adjustable parameters, covering a broad range of experimental polymer volume fractions (0.001 ≤ϕ≤ 0.5) and regimes from ultra-soft star-like to hard sphere-like particles, that finally results in the dynamic phase diagram of soft colloids. In particular, we find throughout the concentration domain a strong correlation between mesoscopic diffusion and macroscopic viscosity, irrespective of softness, manifested in data collapse on master curves using the interaction length σint as the only relevant parameter. A clear reentrance in the glass transition at high aggregation numbers is found, recovering the predicted hard-sphere (HS) value in the hard-sphere like limit. Finally, the excellent agreement between our new experimental systems with different but already established model systems shows the relevance of block copolymer micelles as a versatile realization of soft colloids and the general validity of a coarse-grained approach for the description of the structure and dynamics of soft colloids.

Tuning the Instrument Resolution Using Chopper and Time of Flight at the Small-angle Neutron Scattering Diffractometer KWS-2

Journal of Applied Crystallography. Dec, 2015  |  Pubmed ID: 26664343

Following demand from the user community regarding the possibility of improving the experimental resolution, the dedicated high-intensity/extended Q-range SANS diffractometer KWS-2 of the Jülich Centre for Neutron Science at the Heinz Maier-Leibnitz Center in Garching was equipped with a double-disc chopper with a variable opening slit window and time-of-flight (TOF) data acquisition option. The chopper used in concert with a dedicated high-intensity velocity selector enables the tuning at will of the wavelength resolution Δλ/λ within a broad range, from 20% (standard) down to 2%, in a convenient and safe manner following pre-planned or spontaneous decisions during the experiment. The new working mode is described in detail, and its efficiency is demonstrated on several standard samples with known properties and on a completely new crystallizable copolymer system, which were investigated using both the conventional (static) and TOF modes.

Morphology of Crystalline-amorphous Olefin Block Copolymers in Solution Characterized by Small-angle Neutron Scattering and Microscopy

Journal of Applied Crystallography. Dec, 2015  |  Pubmed ID: 26664344

The single-chain properties and self-assembly behavior in dilute solution of olefin block copolymers obtained by chain-shuttling technology and consisting of alternating crystallizable and amorphous ethylene/1-octene blocks were investigated by pinhole and focusing small-angle neutron scattering techniques, optical microscopy in bright-field and crossed-polarizer modes, and differential scanning calorimetry. The complex hydrocarbon soluble (precipitant free) macro-aggregates formed with decreasing temperature are characterized by spherulitic textures. The spherulites yield, on one hand, a morphology that depends on the chain structure properties and, on the other hand, multiple structural levels with a hierarchical organization that ranges from 10 Å up to tens of micrometres. This morphology displays peculiarities dictated by the polydisperse character of these materials.

Imidazolium-based Anion Exchange Membranes for Alkaline Anion Fuel Cells: Elucidation of the Morphology and the Interplay Between the Morphology and Properties

Soft Matter. Feb, 2016  |  Pubmed ID: 26660846

We investigated the morphology and swelling behavior of a new graft-type of anion exchange membrane (AEM) containing 2-methylimidazolium groups by using a contrast variation small angle neutron scattering (SANS) technique. These AEMs were prepared by radiation-induced grafting of 2-methyl-1-vinylimidazole and styrene into poly(ethylene-co-tetrafluoroethylene) (ETFE) films and subsequent N-alkylation with methyliodide, and possessed both high alkaline durability and high conductivity. Our results showed that the crystalline lamellar and crystallite structures originating from the pristine ETFE films were more or less conserved in these AEMs, but the lamellar d-spacing in both dry and wet membranes was enlarged, indicating an expansion of the amorphous lamellae due to the graft chains introduced in the grafting process and the water incorporated in the swelling process. For the first time, the swelling behavior of the AEMs was studied quantitatively in various water mixtures of water and deuterated water with different volume ratios (contrast variation method), and the morphology of these membranes was elucidated by three phases: phase (1) crystalline ETFE domains, which offer good mechanical properties; phase (2) hydrophobic amorphous domains, which are made up of amorphous ETFE chains and offer a matrix to create conducting regions; phase (3) interconnected hydrated domains, which are composed of the entire graft chains and water and play a key role in promoting the conductivity.

Monomeric Amyloid Beta Peptide in Hexafluoroisopropanol Detected by Small Angle Neutron Scattering

PloS One. 2016  |  Pubmed ID: 26919121

Small proteins like amyloid beta (Aβ) monomers are related to neurodegenerative disorders by aggregation to insoluble fibrils. Small angle neutron scattering (SANS) is a nondestructive method to observe the aggregation process in solution. We show that SANS is able to resolve monomers of small molecular weight like Aβ for aggregation studies. We examine Aβ monomers after prolonged storing in d-hexafluoroisopropanol (dHFIP) by using SANS and dynamic light scattering (DLS). We determined the radius of gyration from SANS as 1.0±0.1 nm for Aβ1-40 and 1.6±0.1 nm for Aβ1-42 in agreement with 3D NMR structures in similar solvents suggesting a solvent surface layer with 5% increased density. After initial dissolution in dHFIP Aβ aggregates sediment with a major component of pure monomers showing a hydrodynamic radius of 1.8±0.3 nm for Aβ1-40 and 3.2±0.4 nm for Aβ1-42 including a surface layer of dHFIP solvent molecules.

Small Angle Neutron Scattering Data of Polymer Electrolyte Membranes Partially Swollen in Water

Data in Brief. Jun, 2016  |  Pubmed ID: 27054164

In this article, we show the small-angle neutron scattering (SANS) data obtained from the polymer electrolyte membranes (PEMs) equilibrated at a given relative humidity. We apply Hard-Sphere (HS) structure model with Percus-Yervick interference interactions to analyze the dataset. The molecular structure of these PEMs and the morphologies of the fully water-swollen membranes have been elucidated by Zhao et al. "Elucidation of the morphology of the hydrocarbon multi-block copolymer electrolyte membranes for proton exchange fuel cells" [1].

Scattering Investigation of Multiscale Organization in Aqueous Solutions of Native Xanthan

Carbohydrate Polymers. Nov, 2016  |  Pubmed ID: 27561487

The hierarchical morphology of xanthan solutions is analyzed by light and neutron scattering in a broad range of concentrations in order to connect their morphology to their well-documented dynamic properties. Static light scattering inside the semidilute regime is dominated by the form factor of individual xanthan chains while at higher concentrations chain interconnections appear to modify the low wave vector scattering. Dynamic light scattering reveals the self-similar nature of the solutions caused by interchain associations as intensity autocorrelation functions present power-law behaviour. Small angle neutron scattering is dominated by the fractal scattering from the formed network at intermediate length scales. At small length scales the rigid structure of xanthan is revealed and the molecular weight per unit length is extracted. No detectable morphological alterations for shear rates up to 1000rad/s are observed revealing that the shear thinning behaviour of xanthan is related to the disruption of chain-chain associations.

Micelles from HOOC-PnBA-b-PAA-C12H15 Diblock Amphiphilic Polyelectrolytes As Protein Nanocarriers

Biomacromolecules. Oct, 2016  |  Pubmed ID: 27732775

We investigate the potential of self-assembled nanostructures of the PnBA-b-PAA amphiphilic diblock polyelectrolyte as candidates for protein nanocarriers. Three PnBA-b-PAA copolymers with different molecular weights and PnBA/PAA weight ratios are tested. The system with the most well-defined core-shell micellar structure is chosen for complexation with lysozyme. Its solutions are found to contain well-defined core-shell micelles that are stable upon increase of solution salt content to physiological levels. Upon mixing with lysozyme we find that the protein globules accumulate preferably at the outer parts of the hydrated corona of the micelles. Increasing the protein concentration intermicellar aggregation is enhanced in a controllable way. At high salt content the number of proteins per micelle is lower compared to the low salt content, which points to an interaction of predominantly electrostatic nature. While light scattering is very sensitive to complexation, small angle neutron scattering is able to distinguish between the contributions from individual micelles and aggregates. This work demonstrates the use of scattering techniques in order to characterize protein-polymer interactions in multiple hierarchical levels.

Simultaneous Small-angle Neutron Scattering and Fourier Transform Infrared Spectroscopic Measurements on Cocrystals of Syndiotactic Polystyrene with Polyethylene Glycol Dimethyl Ethers

Journal of Applied Crystallography. Oct, 2016  |  Pubmed ID: 27738412

Syndiotactic polystyrene (sPS) is a crystalline polymer which has a unique property; it is able to form cocrystals with a wide range of chemical compounds, in which the guest molecules are confined in the vacancies of the host sPS crystalline region. Recently, it has been found that even polyethylene glycol oligomers with a molecular weight of more than several hundreds can be introduced into the sPS crystalline region. It is quite important to know how such a long-chain molecule is stored in the host sPS lattice. To tackle this issue, a new simultaneous measurement method combing small-angle neutron scattering and Fourier transform infrared spectroscopy (SANS/FTIR), which has been recently developed by the authors, was applied to an sPS cocrystal with polyethylene glycol dimethyl ether with a molecular weight of 500 (PEGDME500). The temperature-dependent changes of the SANS profile and FTIR spectrum were followed from room temperature up to 413 K for a one-dimensionally oriented SANS/PEGDME500 cocrystal sample. The intensity of the reflections due to the stacking of crystalline lamellae showed a significant temperature dependence. The two-dimensional pattern in the high Q region of SANS also changed depending on temperature. The combined information obtained by SANS and FTIR suggested that PEGDME500 molecules are distributed in both the crystalline and amorphous regions in the low-temperature region close to room temperature, but they are predominantly included in the amorphous region in the high-temperature region. It was also suggested by the two-dimensional SANS profile that PEGDME500 molecules in the crystalline region have an elongated structure along the thickness direction of the crystalline lamellae.

Structure and Domain Dynamics of Human Lactoferrin in Solution and the Influence of Fe(III)-ion Ligand Binding

BMC Biophysics. 2016  |  Pubmed ID: 27822363

Human lactoferrin is an iron-binding protein of the innate immune system consisting of two connected lobes, each with a binding site located in a cleft. The clefts in each lobe undergo a hinge movement from open to close when Fe(3+) is present in the solution and can be bound. The binding mechanism was assumed to relate on thermal domain fluctuations of the cleft domains prior to binding. We used Small Angle Neutron Scattering and Neutron Spin Echo Spectroscopy to determine the lactoferrin structure and domain dynamics in solution.

simple hit counter