In JoVE (1)

Other Publications (7)

Articles by David M. Feliciano in JoVE

Other articles by David M. Feliciano on PubMed

Repression of Ca2+/calmodulin-dependent Protein Kinase IV Signaling Accelerates Retinoic Acid-induced Differentiation of Human Neuroblastoma Cells

The Journal of Biological Chemistry. Sep, 2009  |  Pubmed ID: 19633294

Neuroblastoma cells having stem cell-like qualities are widely employed models for the study of neural stem/progenitor cell proliferation and differentiation. We find that human BE(2)C neuroblastoma cells possess a signaling cascade initiated by Ca(2+) influx via voltage-dependent calcium channels and the N-methyl-D-aspartate (NMDA) receptor and culminating in nuclear calmodulin-dependent protein kinase IV (CaMKIV)-mediated phosphorylation and activation of the transcription factors Ca(2+)/cyclic AMP-response element-binding protein (CREB) and ATF1 (activating transcription factor-1). This pathway functions to maintain BE(2)C cells in an undifferentiated, proliferative state. Parallel to this Ca(2+)-dependent pathway is a hormone-responsive program by which retinoic acid (RA) initiates the differentiation of BE(2)C cells toward a neuronal lineage. This is evidenced by RA-dependent induction of the cell cycle inhibitor p21/Cip1 (Cdk-interacting protein 1) and cell cycle arrest, induction of the neuroblastic marker doublecortin and of the neuron-specific intermediate filament protein, peripherin, and by RA-stimulated extension of neuritic processes. During neuronal differentiation there is a complex antagonistic interplay between these two major signaling pathways. RA down-regulates expression of CaMKIV and one of its upstream activators, CaMKK1 (calmodulin-dependent protein kinase kinase 1). This is accompanied by RA-induced suppression of activating phosphorylation of CREB with a time course paralleling that of CaMKIV down-regulation. RA-induced repression of the Ca(2+)/calmodulin-dependent protein kinase kinase/CaMKIV/CREB pathway appears to be involved in regulating the timing of neuronal differentiation, as shown by the effect of RNA interference of CaMKIV to markedly accelerate RA-dependent up-regulation of p21/Cip1 and doublecortin expression and RA-promoted neurite outgrowth. RA-induced repression of the CaMKIV signaling pathway may represent an early event in retinoid-dependent neuronal differentiation.

Single-cell Tsc1 Knockout During Corticogenesis Generates Tuber-like Lesions and Reduces Seizure Threshold in Mice

The Journal of Clinical Investigation. Apr, 2011  |  Pubmed ID: 21403402

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by mutations in Tsc1 or Tsc2 that lead to mammalian target of rapamycin (mTOR) hyperactivity. Patients with TSC suffer from intractable seizures resulting from cortical malformations known as tubers, but research into how these tubers form has been limited because of the lack of an animal model. To address this limitation, we used in utero electroporation to knock out Tsc1 in selected neuronal populations in mice heterozygous for a mutant Tsc1 allele that eliminates the Tsc1 gene product at a precise developmental time point. Knockout of Tsc1 in single cells led to increased mTOR activity and soma size in the affected neurons. The mice exhibited white matter heterotopic nodules and discrete cortical tuber-like lesions containing cytomegalic and multinucleated neurons with abnormal dendritic trees resembling giant cells. Cortical tubers in the mutant mice did not exhibit signs of gliosis. Furthermore, phospho-S6 immunoreactivity was not upregulated in Tsc1-null astrocytes despite a lower seizure threshold. Collectively, these data suggest that a double-hit strategy to eliminate Tsc1 in discrete neuronal populations generates TSC-associated cortical lesions, providing a model to uncover the mechanisms of lesion formation and cortical hyperexcitability. In addition, the absence of glial reactivity argues against a contribution of astrocytes to lesion-associated hyperexcitability.

Postnatal Neurogenesis Generates Heterotopias, Olfactory Micronodules and Cortical Infiltration Following Single-cell Tsc1 Deletion

Human Molecular Genetics. Feb, 2012  |  Pubmed ID: 22068588

Neurological symptoms in tuberous sclerosis complex (TSC) and associated brain lesions are thought to arise from abnormal embryonic neurogenesis due to inherited mutations in Tsc1 or Tsc2. Neurogenesis persists postnatally in the human subventricular zone (SVZ) where slow-growing tumors containing Tsc-mutant cells are generated in TSC patients. However, whether Tsc-mutant neurons from the postnatal SVZ contribute to brain lesions and abnormal circuit remodeling in forebrain structures remain unexplored. Here, we report the formation of olfactory lesions following conditional genetic Tsc1 deletion in the postnatal SVZ using transgenic mice or targeted single-cell electroporation. These lesions include migratory heterotopias and olfactory micronodules containing neurons with a hypertrophic dendritic tree. Most significantly, our data identify migrating glial and neuronal precursors that are re-routed and infiltrate forebrain structures (e.g. cortex) and become glia and neurons. These data show that Tsc1-mutant cells from the neonatal and juvenile SVZ generate brain lesions and structural abnormalities, which would not be visible using conventional non-invasive imaging. These findings also raise the hypothesis that micronodules and the persistent infiltration of cells to forebrain structures may contribute to network malfunction leading to progressive neuropsychiatric symptoms in TSC.

A Regulatory Feedback Loop Between Ca2+/calmodulin-dependent Protein Kinase Kinase 2 (CaMKK2) and the Androgen Receptor in Prostate Cancer Progression

The Journal of Biological Chemistry. Jul, 2012  |  Pubmed ID: 22654108

The androgen receptor (AR) plays a critical role in prostate cancer (PCa) progression, however, the molecular mechanisms by which the AR regulates cell proliferation in androgen-dependent and castration-resistant PCa are incompletely understood. We report that Ca(2+)/calmodulin-dependent kinase kinase 2 (CaMKK2) expression increases and becomes nuclear or perinuclear in advanced PCa. In the TRAMP (transgenic adenocarcinoma of mouse prostate) model of PCa, CaMKK2 expression increases with PCa progression with many cells exhibiting nuclear staining. CaMKK2 expression is higher in human castration-resistant tumor xenografts compared with androgen-responsive xenografts and is markedly higher in the AR-expressing, tumorigenic cell line LNCaP compared with cell lines that are AR-nonexpressing and/or nontumorigenic. In LNCaP cells, dihydrotestosterone induced CaMKK2 mRNA and protein expression and translocation of CaMKK2 to the nucleus. Conversely, androgen withdrawal suppressed CaMKK2 expression. Knockdown of CaMKK2 expression by RNAi reduced LNCaP cell proliferation and increased percentages of cells in G(1) phase, whereas correspondingly reducing percentages in S phase, of the cell cycle. CaMKK2 knockdown reduced expression of the AR target gene prostate-specific antigen at both mRNA and protein levels, AR transcriptional activity driven by androgen responsive elements from the prostate-specific probasin gene promoter and levels of the AR-regulated cell cycle proteins, cyclin D1 and hyperphosphorylated Rb. Our results suggest that in PCa progression, CaMKK2 and the AR are in a feedback loop in which CaMKK2 is induced by the AR to maintain AR activity, AR-dependent cell cycle control, and continued cell proliferation.

Newborn Cortical Neurons: Only for Neonates?

Trends in Neurosciences. Jan, 2013  |  Pubmed ID: 23062965

Despite a century of debate over the existence of adult cortical neurogenesis, a consensus has not yet been reached. Here, we review evidence of the existence, origin, migration, and integration of neurons into the adult and neonatal cerebral cortex. We find that the lack of consensus likely stems from the low rate of postnatal cortical neurogenesis that has been observed, the fact that neurogenesis may be limited to subtypes of interneurons, and variability in other conditions, both physiological and environmental. We emphasize that neurogenesis occurs in the neonatal cortex and that neural stem cells are present into adulthood; it is possible that these progenitors are dormant, but they may be reactivated, for example, following injury.

Hypoxia-inducible Factor 1a is a Tsc1-regulated Survival Factor in Newborn Neurons in Tuberous Sclerosis Complex

Human Molecular Genetics. Feb, 2013  |  Pubmed ID: 23349360

Tuberous sclerosis complex (TSC) is a genetic disorder caused by mutations in TSC1 or TSC2 resulting in hyperactivity of the mammalian target of rapamycin and disabling brain lesions. These lesions contain misplaced neurons enriched in hypoxia-inducible factor 1a (HIF1a). However, the relationship between TSC1/2 and HIF1a and the function of HIF1a in TSC neurons remain unexplored. Here, we examine the degree of HIF1a activity and its function in newborn Tsc1(null) neurons in a mouse model of TSC. Using single cell electroporation in the neurogenic subventricular zone (SVZ) of neonatal mice, we deleted Tsc1 and generated olfactory lesions containing misplaced Tsc1(null) neurons as previously reported. These newborn neurons displayed elevated HIF1a-mediated transcriptional activity when compared with Tsc1 heterozygote neurons and a marked resistance to cell death induced by a HIF1a antagonist. Electroporation of Hif1a targeting short hairpin RNA (shRNA) or dominant negative HIF1a constructs resulted in 80-90% loss of Tsc1(null) newborn neurons although sparing SVZ stem cells. Consistent with this later finding, induction of Hif1a shRNA expression during synaptic integration thus bypassing neuron production also resulted in newborn neuron death. Collectively, these results suggest that HIF1a acts as a molecular determinant of newborn neuron survival and that its TSC1-dependent up-regulation gave Tsc1(null) neurons a survival advantage, despite their misplacement in a novel microenvironment.

Rheb Activation in Subventricular Zone Progenitors Leads to Heterotopia, Ectopic Neuronal Differentiation, and Rapamycin-sensitive Olfactory Micronodules and Dendrite Hypertrophy of Newborn Neurons

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience. Feb, 2013  |  Pubmed ID: 23392671

Mammalian target of rapamycin (mTOR) hyperactivity in perinatal neural progenitor cells (NPCs) of tuberous sclerosis complex 1 (Tsc1) heterozygote mice leads to heterotopia and abnormal neuronal morphogenesis as seen in patients with tuberous sclerosis. Considering that pathological hyperactive mTOR also occurs in individuals carrying no genetic mutations, we examined whether increasing mTOR activity in neonatal NPCs of wild-type mice would recapitulate the above phenotypes. Electroporation of a plasmid encoding constitutively active Ras-homolog enriched in brain (Rheb(CA)) into subventricular zone NPCs increased mTOR activity in newborn cells. At 19 d post-electroporation (dpe), heterotopia and ectopic cells with a neuronal morphology were observed along the migratory path [rostral migratory stream (RMS)] and in the olfactory bulb (OB). These ectopic cells displayed action potentials and received synaptic inputs identifying them as synaptically integrated neurons. RMS heterotopias contained astrocytes, neurons, and entrapped neuroblasts. Immunostaining at 3 dpe revealed the presence of Mash1(+) Olig2(-) cells in the migratory route accompanied by ectopic neuronal differentiation and altered direction and speed of neuroblast migration at 7 dpe, suggesting a non-cell-autonomous disruption of migration. At >19 dpe, newborn Rheb(CA)-expressing neurons displayed altered distribution and formed micronodules in the OB. In addition, they displayed increased dendritic complexity along with altered membrane biophysics and increased frequency of GABAergic synaptic inputs. OB heterotopia, micronodules, and dendrite hypertrophy were notably prevented by rapamycin treatment, suggesting their mTOR dependence. Collectively, these data show that increasing mTOR activity in neonatal NPCs of wild-type mice recapitulate the pathologies observed in Tsc1 mutant mice. In addition, increased mTOR activity in individuals without known mutations could significantly impact neurogenesis and circuit formation.

simple hit counter