In JoVE (1)

Other Publications (8)

Articles by Douglas J. Kelly in JoVE

 JoVE Biology

Open Source High Content Analysis Utilizing Automated Fluorescence Lifetime Imaging Microscopy

1Photonics Group, Department of Physics, Imperial College London, 2Institute for Chemical Biology, Department of Chemistry, Imperial College London, 3MRC Clinical Sciences Centre, Hammersmith Hospital, 4Chemical Biology Section, Department of Chemistry, Imperial College London, 5Retroscreen Virology Ltd, 6Pfizer Global Research and Development, Pfizer Limited, Sandwich, Kent, UK, 7Centre for Histopathology, Imperial College London

JoVE 55119

Other articles by Douglas J. Kelly on PubMed

Phosphorylation of FOXO3a on Ser-7 by P38 Promotes Its Nuclear Localization in Response to Doxorubicin

The Journal of Biological Chemistry. Jan, 2012  |  Pubmed ID: 22128155

FOXO3a is a forkhead transcription factor that regulates a multitude of important cellular processes, including proliferation, apoptosis, differentiation, and metabolism. Doxorubicin treatment of MCF-7 breast carcinoma cells results in FOXO3a nuclear relocation and the induction of the stress-activated kinase p38 MAPK. Here, we studied the potential regulation of FOXO3a by p38 in response to doxorubicin. Co-immunoprecipitation studies in MCF-7 cells demonstrated a direct interaction between p38 and FOXO3a. We also showed that p38 can bind and phosphorylate a recombinant FOXO3a directly in vitro. HPLC-coupled phosphopeptide mapping and mass spectrometric analyses identified serine 7 as a major site for p38 phosphorylation. Using a phosphorylated Ser-7 FOXO3a antibody, we demonstrated that FOXO3a is phosphorylated on Ser-7 in response to doxorubicin. Immunofluorescence staining studies showed that upon doxorubicin treatment, the wild-type FOXO3a relocalized to the nucleus, whereas the phosphorylation-defective FOXO3a (Ala-7) mutant remained largely in the cytoplasm. Treatment with SB202190 also inhibits the doxorubicin-induced FOXO3a Ser-7 phosphorylation and nuclear accumulation in MCF-7 cells. In addition, doxorubicin caused the nuclear translocation of FOXO3a in wild-type but not p38-depleted mouse fibroblasts. Together, our results suggest that p38 phosphorylation of FOXO3a on Ser-7 is essential for its nuclear relocalization in response to doxorubicin.

A Protein Biosensor That Relies on Bending of Single DNA Molecules

Chemphyschem : a European Journal of Chemical Physics and Physical Chemistry. Mar, 2012  |  Pubmed ID: 22368093

A "bendy" protein sensor: A DNA-based sensor that uses folded DNA (through DNA kinks) and protein-induced bending to detect DNA-binding proteins is presented. Single-molecule sensing of a transcriptional activator (catabolite activator protein, CAP, which bends its DNA site by 80°) is demonstrated in solution and on surfaces, both in buffers and in cell lysates. The method should allow detection of a wide range of DNA-bending proteins.

Automated Fluorescence Lifetime Imaging Plate Reader and Its Application to Förster Resonant Energy Transfer Readout of Gag Protein Aggregation

Journal of Biophotonics. May, 2013  |  Pubmed ID: 23184449

Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z' factors exceeding 0.6 are realised for this FLIM FRET assay.

Detection of Cartilage Matrix Degradation by Autofluorescence Lifetime

Matrix Biology : Journal of the International Society for Matrix Biology. Jan, 2013  |  Pubmed ID: 23266527

Cartilage is a vital organ to maintain joint function. Upon arthritis, proteolytic enzymes initiate degradation of cartilage extracellular matrix (ECM) resulting in eventual loss of joint function. However, there are only limited ways of non-invasively monitoring early chemical changes in cartilage matrix. Here we report that the autofluorescence decay profiles of cartilage tissue are significantly affected by proteolytic degradation of cartilage ECM and can be characterised by measurements of the autofluorescence lifetime (AFL). A compact multidimensional fluorometer coupled to a fibre-optic probe was developed for single point measurements of AFL and applied to cartilage that was treated with different proteinases. Upon treating cartilage with bacterial collagenase, trypsin or matrix metalloproteinase 1, a significant dose and time dependent decrease of AFL was observed. Our data suggest that AFL of cartilage tissue is a potential non-invasive readout to monitor cartilage matrix integrity that may contribute to future diagnosis of cartilage defects as well as monitoring the efficacy of anti-joint therapeutic agents.

Rapid Global Fitting of Large Fluorescence Lifetime Imaging Microscopy Datasets

PloS One. 2013  |  Pubmed ID: 23940626

Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.

Visualising Apoptosis in Live Zebrafish Using Fluorescence Lifetime Imaging with Optical Projection Tomography to Map FRET Biosensor Activity in Space and Time

Journal of Biophotonics. Apr, 2016  |  Pubmed ID: 26753623

Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region.

Screening for Protein-protein Interactions Using Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM)

Scientific Reports. Jun, 2016  |  Pubmed ID: 27339025

We present a high content multiwell plate cell-based assay approach to quantify protein interactions directly in cells using Förster resonance energy transfer (FRET) read out by automated fluorescence lifetime imaging (FLIM). Automated FLIM is implemented using wide-field time-gated detection, typically requiring only 10 s per field of view (FOV). Averaging over biological, thermal and shot noise with 100's to 1000's of FOV enables unbiased quantitative analysis with high statistical power. Plotting average donor lifetime vs. acceptor/donor intensity ratio clearly identifies protein interactions and fitting to double exponential donor decay models provides estimates of interacting population fractions that, with calibrated donor and acceptor fluorescence intensities, can yield dissociation constants. We demonstrate the application to identify binding partners of MST1 kinase and estimate interaction strength among the members of the RASSF protein family, which have important roles in apoptosis via the Hippo signalling pathway. KD values broadly agree with published biochemical measurements.

Corrigendum: Screening for Protein-protein Interactions Using Förster Resonance Energy Transfer (FRET) and Fluorescence Lifetime Imaging Microscopy (FLIM)

Scientific Reports. Sep, 2016  |  Pubmed ID: 27654516

simple hit counter