In JoVE (1)

Other Publications (5)

Articles by Jackson LiangYao Li in JoVE

 JoVE Medicine

Inducing Ischemia-reperfusion Injury in the Mouse Ear Skin for Intravital Multiphoton Imaging of Immune Responses

1Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, 2Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 3Lee Kong Chian School of Medicine, Nanyang Technological University, 4Centenary Institute for Cancer Medicine and Cell Biology, 5Discipline of Dermatology, University of Sydney, 6Department of Dermatology, Royal Prince Alfred Hospital, 7LSI Immunology Programme, National University of Singapore, 8School of Biological Sciences, Nanyang Technological University


JoVE 54956

Other articles by Jackson LiangYao Li on PubMed

Intravital Multiphoton Imaging of Immune Responses in the Mouse Ear Skin

Nature Protocols. Feb, 2012  |  Pubmed ID: 22240584

Multiphoton (MP) microscopy enables the direct in vivo visualization, with high spatial and temporal resolution, of fluorescently tagged immune cells, extracellular matrix and vasculature in tissues. This approach, therefore, represents a powerful alternative to traditional methods of assessing immune cell function in the skin, which are mainly based on flow cytometry and histology. Here we provide a step-by-step protocol describing experimental procedures for intravital MP imaging of the mouse ear skin, which can be easily adapted to address many specific skin-related biological questions. We demonstrate the use of this procedure by characterizing the response of neutrophils during cutaneous inflammation, which can be used to perform in-depth analysis of neutrophil behavior in the context of the skin microanatomy, including the epidermis, dermis and blood vessels. Such experiments are typically completed within 1 d, but as the procedures are minimally invasive, it is possible to perform longitudinal studies through repeated imaging.

Peeking into the Secret Life of Neutrophils

Immunologic Research. Sep, 2012  |  Pubmed ID: 22407577

The migration of neutrophils between tissue compartments is an important aspect of innate immune surveillance. This process is regulated by a cascade of cellular and molecular signals to avoid unnecessary crowding of neutrophils at the periphery, to allow rapid mobilization of neutrophils in response to inflammatory stimuli, and to return to a state of homeostasis after the response. Intravital microscopy approaches have been fundamental in unraveling many aspects of neutrophil behavior, providing important mechanistic information on the processes involved in basal and disease states. Here, we provide a broad overview of the current state of research on neutrophil biology, describing the processes in the typical life cycle of neutrophils, from their first appearance in the bone marrow until their eventual destruction. We will focus on novel aspects of neutrophil behavior, which had previously been elusive until their recent elucidation by advanced intravital microscopy techniques.

Real-time Imaging of Dendritic Cell Responses to Sterile Tissue Injury

The Journal of Investigative Dermatology. Apr, 2015  |  Pubmed ID: 25431854

Identification of a Novel Lymphoid Population in the Murine Epidermis

Scientific Reports. Jul, 2015  |  Pubmed ID: 26223192

T cell progenitors are known to arise from the foetal liver in embryos and the bone marrow in adults; however different studies have shown that a pool of T cell progenitors may also exist in the periphery. Here, we identified a lymphoid population resembling peripheral T cell progenitors which transiently seed the epidermis during late embryogenesis in both wild-type and T cell-deficient mice. We named these cells ELCs (Epidermal Lymphoid Cells). ELCs expressed Thy1 and CD2, but lacked CD3 and TCRαβ/γδ at their surface, reminiscent of the phenotype of extra- or intra- thymic T cell progenitors. Similarly to Dendritic Epidermal T Cells (DETCs), ELCs were radioresistant and capable of self-renewal. However, despite their progenitor-like phenotype and expression of T cell lineage markers within the population, ELCs did not differentiate into conventional T cells or DETCs in in vitro, ex vivo or in vivo differentiation assays. Finally, we show that ELC expressed NK markers and secreted IFN-γ upon stimulation. Therefore we report the discovery of a unique population of lymphoid cells within the murine epidermis that appears related to NK cells with as-yet-unidentified functions.

Neutrophils Self-Regulate Immune Complex-Mediated Cutaneous Inflammation Through CXCL2

The Journal of Investigative Dermatology. Feb, 2016  |  Pubmed ID: 26802238

Deposition of immune complexes (ICs) in tissues triggers acute inflammatory pathology characterized by massive neutrophil influx leading to edema and hemorrhage, and is especially associated with vasculitis of the skin, but the mechanisms that regulate this type III hypersensitivity process remain poorly understood. Here, using a combination of multiphoton intravital microscopy and genomic approaches, we re-examined the cutaneous reverse passive Arthus reaction and observed that IC-activated neutrophils underwent transmigration, triggered further IC formation, and transported these ICs into the interstitium, whereas neutrophil depletion drastically reduced IC formation and ameliorated vascular leakage in vivo. Thereafter, we show that these neutrophils expressed high levels of CXCL2, which further amplified neutrophil recruitment and activation in an autocrine and/or paracrine manner. Notably, CXCL1 expression was restricted to tissue-resident cell types, but IC-activated neutrophils may also indirectly, via soluble factors, modulate macrophage CXCL1 expression. Consistent with their distinct cellular origins and localization, only neutralization of CXCL2 but not CXCL1 in the interstitium effectively reduced neutrophil recruitment. In summary, our study establishes that neutrophils are able to self-regulate their own recruitment and responses during IC-mediated inflammation through a CXCL2-driven feed forward loop.

Waiting
simple hit counter