JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology

| 

In JoVE (1)

Other Publications (1)

Articles by Jerome V. Karpiak in JoVE

 JoVE Bioengineering

Density Gradient Multilayered Polymerization (DGMP): A Novel Technique for Creating Multi-compartment, Customizable Scaffolds for Tissue Engineering

1Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 2Biomedical Sciences Program, University of California, San Diego, 3Department of Bioengineering, University of California, San Diego


JoVE 50018

Here we describe a unique strategy for creating biocompatible, layered matrices with continuous interfaces between distinct layers for tissue engineering. Such a scaffold could provide an ideal customizable environment to modulate cell behavior by various biological, chemical or mechanical cues

Other articles by Jerome V. Karpiak on PubMed

Density Gradient Multilayer Polymerization for Creating Complex Tissue

An adaptable density gradient multilayer polymerization (DGMP) method facilitates simple fabrication of complex multicompartment scaffolds with structurally continuous interfaces. Solvent density liquid-liquid phase segregation compartmentalizes varied mechanical and chemical cues independently. Bulk photopolymerization produces stratified three-dimensional and two-dimensional matrices. Cells attach to patterned adhesion peptides on biomimetic 2D substrates.

Waiting
simple hit counter