JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE General

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

In JoVE (1)

Other Publications (4)

Articles by Jiying Ning in JoVE

 JoVE Bioengineering

Correlative Microscopy for 3D Structural Analysis of Dynamic Interactions

1Department of Structural Biology, University of Pittsburgh School of Medicine, 2Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine


JoVE 50386

We describe a correlative microscopy method that combines high-speed 3D live-cell fluorescent light microscopy and high-resolution cryo-electron tomography. We demonstrate the capability of the correlative method by imaging dynamic, small HIV-1 particles interacting with host HeLa cells.

Other articles by Jiying Ning on PubMed

Functional Assembly of Bacterial Communities with Activity for the Biodegradation of an Organophosphorus Pesticide in the Rape Phyllosphere

Although most pesticides sprayed on terrestrial plants remain on their leaf surfaces, the relationship between leaf-associated microbial populations and pesticide degradation remains unclear. Here we examined changes in the bacterial community composition in the rape phyllosphere after treatment with dichlorvos, an organophosphorus pesticide. Results indicate that the bacterial community showed marked changes after treatment. We evaluated the rate of dichlorvos degradation by a natural microbial community on rape leaves and found that more dichlorvos was degraded on microbial-population-inhabited leaves than on surface-sterilized leaves. Six dichlorvos-degrading bacteria with 16S rRNA gene sequences that are most similar to those of members of the genera Pseudomonas, Xanthomonas, Sphingomonas, Acidovorax, Agrobacterium and Chryseobacterium were isolated from the natural community. We report for the first time that three of these epiphytic bacterial species, from the genera Sphingomonas, Acidovorax and Chryseobacterium, can degrade organophosphorus compounds. Collectively, these results provide direct evidence that bacteria on leaves can degrade organophosphate pesticides, and demonstrate that phyllosphere bacteria have great potential for the bioremediation of pesticides in situ, where the environment is hostile to nonepiphytic bacteria.

Protease Cleavage Leads to Formation of Mature Trimer Interface in HIV-1 Capsid

During retrovirus particle maturation, the assembled Gag polyprotein is cleaved by the viral protease into matrix (MA), capsid (CA), and nucleocapsid (NC) proteins. To form the mature viral capsid, CA rearranges, resulting in a lattice composed of hexameric and pentameric CA units. Recent structural studies of assembled HIV-1 CA revealed several inter-subunit interfaces in the capsid lattice, including a three-fold interhexamer interface that is critical for proper capsid stability. Although a general architecture of immature particles has been provided by cryo-electron tomographic studies, the structural details of the immature particle and the maturation pathway remain unknown. Here, we used cryo-electron microscopy (cryoEM) to determine the structure of tubular assemblies of the HIV-1 CA-SP1-NC protein. Relative to the mature assembled CA structure, we observed a marked conformational difference in the position of the CA-CTD relative to the NTD in the CA-SP1-NC assembly, involving the flexible hinge connecting the two domains. This difference was verified via engineered disulfide crosslinking, revealing that inter-hexamer contacts, in particular those at the pseudo three-fold axis, are altered in the CA-SP1-NC assemblies compared to the CA assemblies. Results from crosslinking analyses of mature and immature HIV-1 particles containing the same Cys substitutions in the Gag protein are consistent with these findings. We further show that cleavage of preassembled CA-SP1-NC by HIV-1 protease in vitro leads to release of SP1 and NC without disassembly of the lattice. Collectively, our results indicate that the proteolytic cleavage of Gag leads to a structural reorganization of the polypeptide and creates the three-fold interhexamer interface, important for the formation of infectious HIV-1 particles.

Structural Insight into HIV-1 Capsid Recognition by Rhesus TRIM5α

Tripartite motif protein isoform 5 alpha (TRIM5α) is a potent antiviral protein that restricts infection by HIV-1 and other retroviruses. TRIM5α recognizes the lattice of the retrovirus capsid through its B30.2 (PRY/SPRY) domain in a species-specific manner. Upon binding, TRIM5α induces premature disassembly of the viral capsid and activates the downstream innate immune response. We have determined the crystal structure of the rhesus TRIM5α PRY/SPRY domain that reveals essential features for capsid binding. Combined cryo-electron microscopy and biochemical data show that the monomeric rhesus TRIM5α PRY/SPRY, but not the human TRIM5α PRY/SPRY, can bind to HIV-1 capsid protein assemblies without causing disruption of the capsid. This suggests that the PRY/SPRY domain alone constitutes an important pattern-sensing component of TRIM5α that is capable of interacting with viral capsids of different curvatures. Our results provide molecular insights into the mechanisms of TRIM5α-mediated retroviral restriction.

Mature HIV-1 Capsid Structure by Cryo-electron Microscopy and All-atom Molecular Dynamics

Retroviral capsid proteins are conserved structurally but assemble into different morphologies. The mature human immunodeficiency virus-1 (HIV-1) capsid is best described by a 'fullerene cone' model, in which hexamers of the capsid protein are linked to form a hexagonal surface lattice that is closed by incorporating 12 capsid-protein pentamers. HIV-1 capsid protein contains an amino-terminal domain (NTD) comprising seven α-helices and a β-hairpin, a carboxy-terminal domain (CTD) comprising four α-helices, and a flexible linker with a 310-helix connecting the two structural domains. Structures of the capsid-protein assembly units have been determined by X-ray crystallography; however, structural information regarding the assembled capsid and the contacts between the assembly units is incomplete. Here we report the cryo-electron microscopy structure of a tubular HIV-1 capsid-protein assembly at 8 Å resolution and the three-dimensional structure of a native HIV-1 core by cryo-electron tomography. The structure of the tubular assembly shows, at the three-fold interface, a three-helix bundle with critical hydrophobic interactions. Mutagenesis studies confirm that hydrophobic residues in the centre of the three-helix bundle are crucial for capsid assembly and stability, and for viral infectivity. The cryo-electron-microscopy structures enable modelling by large-scale molecular dynamics simulation, resulting in all-atom models for the hexamer-of-hexamer and pentamer-of-hexamer elements as well as for the entire capsid. Incorporation of pentamers results in closer trimer contacts and induces acute surface curvature. The complete atomic HIV-1 capsid model provides a platform for further studies of capsid function and for targeted pharmacological intervention.

Waiting
simple hit counter