JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (17)

Articles by Nalini Ramarao in JoVE

 JoVE Immunology and Infection

The Insect Galleria mellonella as a Powerful Infection Model to Investigate Bacterial Pathogenesis

1INRA, Micalis UMR1319, France


JoVE 4392

Oral and intra haemocolic infection of larvae of the greater wax moth Galleria mellonella is described. This insect can be used to study virulence factors of entomopathogenic as well as mammalian opportunistic bacteria. Rearing of the insects, methods of infection and examples of in vivo analysis are described.

Other articles by Nalini Ramarao on PubMed

The InhA1 Metalloprotease Allows Spores of the B. Cereus Group to Escape Macrophages

Bacteria of the Bacillus cereus group are resistant to the immune systems of various hosts and establish potent infections, implying that bacteria circumvent the bactericidal activity of host phagocytic cells. We investigated the fate of Bacillus spores after their internalization by macrophages. We found that these spores survive and escape from macrophages, and that the bacterial metalloprotease InhA1, the major component of the exosporium, is essential for efficient spore release from macrophages. InhA1 from Bacillus thuringiensis also enables Bacillus subtilis to escape from macrophages. Analysis of membrane permeability showed that the bacteria cause alterations in the macrophage membranes and that InhA1 is involved in these processes. Thus, InhA1 contributes to protect the bacteria against the host immune system. These findings provide further insight into the pathogenicity of B. cereus group members.

FlhA Influences Bacillus Thuringiensis PlcR-regulated Gene Transcription, Protein Production, and Virulence

Bacillus thuringiensis and Bacillus cereus are closely related. B. thuringiensis is well known for its entomopathogenic properties, principally due to the synthesis of plasmid-encoded crystal toxins. B. cereus appears to be an emerging opportunistic human pathogen. B. thuringiensis and B. cereus produce many putative virulence factors which are positively controlled by the pleiotropic transcriptional regulator PlcR. The inactivation of plcR decreases but does not abolish virulence, indicating that additional factors like flagella may contribute to pathogenicity. Therefore, we further analyzed a mutant (B. thuringiensis 407 Cry(-) DeltaflhA) previously described as being defective in flagellar apparatus assembly and in motility as well as in the production of hemolysin BL and phospholipases. A large picture of secreted proteins was obtained by two-dimensional electrophoresis analysis, which revealed that flagellar proteins are not secreted and that production of several virulence-associated factors is reduced in the flhA mutant. Moreover, we quantified the effect of FlhA on plcA and hblC gene transcription. The results show that the flhA mutation results in a significant reduction of plcA and hblC transcription. These results indicate that the transcription of several PlcR-regulated virulence factors is coordinated with the flagellar apparatus. Consistently, the flhA mutant also shows a strong decrease in cytotoxicity towards HeLa cells and in virulence against Galleria mellonella larvae following oral and intrahemocoelic inoculation. The decrease in virulence may be due to both a lack of flagella and a lower production of secreted factors. Hence, FlhA appears to be an essential virulence factor with a pleiotropic role.

Adhesion and Cytotoxicity of Bacillus Cereus and Bacillus Thuringiensis to Epithelial Cells Are FlhA and PlcR Dependent, Respectively

Some bacteria of the Bacillus cereus group are enteropathogens. The first cells encountered by bacteria following oral contamination of the host are epithelial cells. We studied the capacity of these bacteria to adhere to epithelial cells and the consequences of this interaction. We found that cell adhesion is strain dependent and that a strain mutated in flhA, which encodes a component of flagellum-apparatus formation, is impaired in adhesion, suggesting that flagella are important virulence factors. The bacteria are cytotoxic to epithelial cells and induce substantial cytoplasmic and membrane alterations. However, direct contact between cells and bacteria is not required for cytotoxicity. The determinants of this cytotoxicity are secreted and their expression depends on the pleiotropic regulator PlcR. Adhesion and cytotoxicity of B. cereus to epithelial cells might explain the diarrhea caused by these pathogens. Our findings provide further insight into the pathogenicity of B. cereus group members.

Capping of Actin Filaments by Vinculin Activated by the Shigella IpaA Carboxyl-terminal Domain

Shigella, the causative agent of bacillary dysentery, invades epithelial cells. Upon bacterial-cell contact, the type III bacterial effector IpaA binds to the cytoskeletal protein vinculin to promote actin reorganization required for efficient bacterial uptake. We show that the last 74 C-terminal residues of IpaA (A559) bind to human vinculin (HV) and promotes its association with actin filaments. Polymerisation experiments demonstrated that A559 was sufficient to induce HV-dependent partial capping of the barbed ends of actin filaments. These results suggest that IpaA regulates actin polymerisation/depolymerisation at sites of Shigella invasion by modulating the barbed end capping activity of vinculin.

Growth-related Variations in the Bacillus Cereus Secretome

Using 2-DE, transcriptional gene fusions and cell cytotoxicity assays, we followed changes in the Bacillus cereus strain ATCC14579 secretome, gene expression and culture supernatant cytotoxicity from the end of the vegetative phase up to 5 h after entry into the stationary phase. The concentration of each of the 22 proteins in the culture supernatant was determined at various times. In addition, the stability of the proteins was studied. Fifteen of these proteins, including 14 members of the virulence regulon PlcR, were known or predicted to be secreted. All of the secreted proteins reached a maximum concentration during early stationary phase, but there were significant differences in the kinetics of their concentrations. The time courses of protein concentrations were in agreement with gene expression data, except for cytotoxin CytK, which was unstable, and for the metalloprotease InhA1. Supernatant cytoxicity also peaked in early stationary phase, and the kinetics of cytotoxicity paralleled the time course of concentration of the PlcR-controlled toxin, CytK. Our concomitant study of the time course of protein concentrations, gene expression and supernatant cytotoxicity reveals that the pathogenic potential of B. cereus peaks during the transition state. It also suggests that there is diversity in the regulation of gene expression within the PlcR regulon.

The YvfTU Two-component System is Involved in PlcR Expression in Bacillus Cereus

Most extracellular virulence factors produced by Bacillus cereus are regulated by the pleiotropic transcriptional activator PlcR. Among strains belonging to the B. cereus group, the plcR gene is always located in the vicinity of genes encoding the YvfTU two-component system. The putative role of YvfTU in the expression of the PlcR regulon was therefore investigated.

Biofilm Formation and Cell Surface Properties Among Pathogenic and Nonpathogenic Strains of the Bacillus Cereus Group

Biofilm formation by 102 Bacillus cereus and B. thuringiensis strains was determined. Strains isolated from soil or involved in digestive tract infections were efficient biofilm formers, whereas strains isolated from other diseases were poor biofilm formers. Cell surface hydrophobicity, the presence of an S layer, and adhesion to epithelial cells were also examined.

The InhA Metalloproteases of Bacillus Cereus Contribute Concomitantly to Virulence

The virulence of Bacillus cereus requires that bacteria have the capacity to colonize their host, degrade specific tissues, and circumvent the host immune system. To study this aspect of pathogenesis, we focused on three metalloproteases, InhA1, InhA2, and InhA3, which share more than 66% identity. The expression of these metalloprotease genes was assessed by transcriptional fusions with a lacZ reporter gene. The expression profiles suggest a complementary time course of InhA production. Indeed, the genes are simultaneously expressed but are oppositely controlled during stationary phase. We constructed single and multiple inhA mutants and assessed the bacterial locations of the proteins as well as their individual or additive roles in macrophage escape and toxicity, antibacterial-peptide cleavage, and virulence. InhA1, a major component of the spore exosporium, is the only InhA metalloprotease involved in bacterial escape from macrophages. A mutant lacking inhA1, inhA2, and inhA3 shows a strong decrease in the level of virulence for insects. Taken together, these results show that the InhA metalloproteases of B. cereus are important virulence factors that may allow the bacteria to counteract the host immune system.

InhA1, NprA, and HlyII As Candidates for Markers to Differentiate Pathogenic from Nonpathogenic Bacillus Cereus Strains

Bacillus cereus is found in food, soil, and plants, and the ability to cause food-borne diseases and opportunistic infection presumably varies among strains. Therefore, measuring harmful toxin production, in addition to the detection of the bacterium itself, may be key for food and hospital safety purposes. All previous studies have focused on the main known virulence factors, cereulide, Hbl, Nhe, and CytK. We examined whether other virulence factors may be specific to pathogenic strains. InhA1, NprA, and HlyII have been described as possibly contributing to B. cereus pathogenicity. We report the prevalence and expression profiles of these three new virulence factor genes among 57 B. cereus strains isolated from various sources, including isolates associated with gastrointestinal and nongastrointestinal diseases. Using PCR, quantitative reverse transcriptase PCR, and virulence in vivo assays, we unraveled these factors as potential markers to differentiate pathogenic from nonpathogenic strains. We show that the hlyII gene is carried only by strains with a pathogenic potential and that the expression levels of inhA1 and nprA are higher in the pathogenic than in the nonpathogenic group of strains studied. These data deliver useful information about the pathogenicity of various B. cereus strains.

CwpFM (EntFM) is a Bacillus Cereus Potential Cell Wall Peptidase Implicated in Adhesion, Biofilm Formation, and Virulence

Bacillus cereus EntFM displays an NlpC/P60 domain, characteristic of cell wall peptidases. The protein is involved in bacterial shape, motility, adhesion to epithelial cells, biofilm formation, vacuolization of macrophages, and virulence. These data provide new information on this, so far, poorly studied toxin and suggest that this protein is a cell wall peptidase, which we propose to rename CwpFM.

Haemolysin II is a Bacillus Cereus Virulence Factor That Induces Apoptosis of Macrophages

Bacillus cereus is a Gram-positive spore-forming bacterium causing food poisoning and serious opportunistic infections. These infections are characterized by bacterial accumulation despite the recruitment of phagocytic cells. The precise mechanisms and the bacterial factors allowing B. cereus to circumvent host immune responses remain to be elucidated. We have previously shown that B. cereus induces macrophage cell death by an unknown mechanism. Here we identified the toxic component from the B. cereus supernatant. We report that Haemolysin II (HlyII) provokes macrophage cell death by apoptosis through its pore-forming activity. The HlyII-induced apoptotic pathway is caspase 3 and 8 dependent, thus most likely mediated by the death receptor pathway. Using insects and mice as in vivo models, we show that deletion of hlyII strongly reduces virulence. In addition, we show that after infection of Bombyx mori larvae, the immune cells are apoptotic, demonstrating that HlyII induces apoptosis of phagocytic cells in vivo. Altogether, our results clearly unravel HlyII as a novel virulence protein that induces apoptosis in phagocytic cells in vitro and in vivo.

Bacillus Anthracis Protease InhA Increases Blood-brain Barrier Permeability and Contributes to Cerebral Hemorrhages

Hemorrhagic meningitis is a fatal complication of anthrax, but its pathogenesis remains poorly understood. The present study examined the role of B. anthracis-secreted metalloprotease InhA on monolayer integrity and permeability of human brain microvasculature endothelial cells (HBMECs) which constitute the blood-brain barrier (BBB). Treatment of HBMECs with purified InhA resulted in a time-dependent decrease in trans-endothelial electrical resistance (TEER) accompanied by zonula occluden-1 (ZO-1) degradation. An InhA-expressing B. subtilis exhibited increased permeability of HBMECs, which did not occur with the isogenic inhA deletion mutant (ΔinhA) of B. anthracis, compared with the corresponding wild-type strain. Mice intravenously administered with purified InhA or nanoparticles-conjugated to InhA demonstrated a time-dependent Evans Blue dye extravasation, leptomeningeal thickening, leukocyte infiltration, and brain parenchymal distribution of InhA indicating BBB leakage and cerebral hemorrhage. Mice challenged with vegetative bacteria of the ΔinhA strain of B. anthracis exhibited a significant decrease in leptomeningeal thickening compared to the wildtype strain. Cumulatively, these findings indicate that InhA contributes to BBB disruption associated with anthrax meningitis through proteolytic attack on the endothelial tight junctional protein zonula occluden (ZO)-1.

Trypan Blue Dye Enters Viable Cells Incubated with the Pore-forming Toxin HlyII of Bacillus Cereus

Trypan blue is a dye that has been widely used for selective staining of dead tissues or cells. Here, we show that the pore-forming toxin HlyII of Bacillus cereus allows trypan blue staining of macrophage cells, despite the cells remaining viable and metabolically active. These findings suggest that the dye enters viable cells through the pores. To our knowledge, this is the first demonstration that trypan blue may enter viable cells. Consequently, the use of trypan blue staining as a marker of vital status should be interpreted with caution. The blue coloration does not necessarily indicate cell lysis, but may rather indicate pore formation in the cell membranes and more generally increased membrane permeability.

Bacillus Anthracis Protease InhA Regulates BslA-mediated Adhesion in Human Endothelial Cells

To achieve widespread dissemination in the host, Bacillus anthracis cells regulate their attachment to host endothelium during infection. Previous studies identified BslA (Bacillus anthracis S-layer Protein A), a virulence factor of B. anthracis, as necessary and sufficient for adhesion of vegetative cells to human endothelial cells. While some factors have been identified, bacteria-specific contributions to BslA mediated adhesion remain unclear. Using the attenuated vaccine Sterne 7702 strain of B. anthracis, we tested the hypothesis that InhA (immune inhibitor A), a B. anthracis protease, regulates BslA levels affecting the bacteria's ability to bind to endothelium. To test this, a combination of inhA mutant and complementation analysis in adhesion and invasion assays, Western blot and InhA inhibitor assays were employed. Results show InhA downregulates BslA activity reducing B. anthracis adhesion and invasion in human brain endothelial cells. BslA protein levels in ΔinhA bacteria were significantly higher than wild-type and complemented strains showing InhA levels and BslA expression are inversely related. BslA was sensitive to purified InhA degradation in a concentration- and time-dependent manner. Taken together these data support the role of InhA regulation of BslA-mediated vegetative cell adhesion and invasion.

Necrotrophism is a Quorum-sensing-regulated Lifestyle in Bacillus Thuringiensis

How pathogenic bacteria infect and kill their host is currently widely investigated. In comparison, the fate of pathogens after the death of their host receives less attention. We studied Bacillus thuringiensis (Bt) infection of an insect host, and show that NprR, a quorum sensor, is active after death of the insect and allows Bt to survive in the cadavers as vegetative cells. Transcriptomic analysis revealed that NprR regulates at least 41 genes, including many encoding degradative enzymes or proteins involved in the synthesis of a nonribosomal peptide named kurstakin. These degradative enzymes are essential in vitro to degrade several substrates and are specifically expressed after host death suggesting that Bt has an active necrotrophic lifestyle in the cadaver. We show that kurstakin is essential for Bt survival during necrotrophic development. It is required for swarming mobility and biofilm formation, presumably through a pore forming activity. A nprR deficient mutant does not develop necrotrophically and does not sporulate efficiently in the cadaver. We report that necrotrophism is a highly regulated mechanism essential for the Bt infectious cycle, contributing to spore spreading.

How the Insect Pathogen Bacteria Bacillus Thuringiensis and Xenorhabdus/Photorhabdus Occupy Their Hosts

Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.

Pathogenic Potential of B. Cereus Strains Revealed by Phenotypic Analysis

B. cereus pathogenic spectrum ranges from strains used as probiotics, to human lethal strains. However, prediction of the pathogenic potential of a strain remains difficult. Here, we show that food poisoning and clinical strains can be differentiated from harmless strains on the basis of host colonization phenotypes.

Waiting
simple hit counter