JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You have subscription access to videos in this collection through your user account.

In JoVE (2)

Other Publications (299)

Articles by Robert Langer in JoVE

 JoVE Bioengineering

Polymer Microarrays for High Throughput Discovery of Biomaterials

1Laboratory of Biophysics and Surface Analysis, University of Nottingham, 2School of Molecular Medical Sciences, University of Nottingham, 3David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology


JoVE 3636

A description of the formation of a polymer microarray using an on-chip photopolymerization technique. The high throughput surface characterization using atomic force microscopy, water contact angle measurements, X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry and a cell attachment assay is also described.

 JoVE Bioengineering

Cell Squeezing as a Robust, Microfluidic Intracellular Delivery Platform

1Department of Chemical Engineering, Massachusetts Institute of Technology, 2David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology


JoVE 50980

Rapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This protocol provides detailed steps on how to use the system for a broad range of applications.

Other articles by Robert Langer on PubMed

Nan'o.tech.nol'o.gy N

Nanocarriers As an Emerging Platform for Cancer Therapy

Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.

Nanoparticle Delivery of Suicide DNA for Epithelial Ovarian Cancer Therapy

Intraperitoneal administration of polymeric nanoparticles to deliver DNA encoding suicide genes holds much promise as an effective therapy for advanced epithelial ovarian cancer. Poly(beta-amino ester)s, a class of cationic, biodegradable polymers complex to DNA to form nanoparticles that deliver DNA to cells in ovarian tumors. Modifications to poly(beta-amino ester)s can improve both the efficiency and specificity with which DNA is delivered to tumor cells. Preclinical studies to test therapeutic efficacy of gene therapy strategies that are under development make use of mouse models for epithelial ovarian cancer and new imaging technologies.

Nanotechnology and Aptamers: Applications in Drug Delivery

Nucleic acid ligands, also known as aptamers, are a class of macromolecules that are being used in several novel nanobiomedical applications. Aptamers are characterized by high affinity and specificity for their target, a versatile selection process, ease of chemical synthesis and a small physical size, which collectively make them attractive molecules for targeting diseases or as therapeutics. These properties will enable aptamers to facilitate innovative new nanotechnologies with applications in medicine. In this review, we will highlight recent developments in using aptamers in nanotechnology solutions for treating and diagnosing disease.

Triggered Release of SiRNA from Poly(ethylene Glycol)-protected, PH-dependent Liposomes

The ability of small interfering RNA (siRNA) to regulate gene expression has potential therapeutic applications, but its use is limited by inefficient delivery. Triggered release of adsorbed poly(ethylene glycol) (PEG)-b-polycation polymers from pH-dependent (PD) liposomes enables protection from immune recognition during circulation (pH 7.4) and subsequent intracellular delivery of siRNA within the endosome (pH ~5.5). Polycationic blocks, based on either poly[2-(dimethylamino)ethyl methacrylate] (31 or 62 DMA repeat units) or polylysine (21 K repeat units), act as anchors for a PEG (113 ethylene glycol repeat units) protective block. Incorporation of 1,2-dioleoyl-3-dimethylammonium-propane (DAP), a titratable lipid, increases the liposome's net cationic character within acidic environments, resulting in polymer desorption and membrane fusion. Liposomes encapsulating siRNA demonstrate green fluorescent protein (GFP) silencing in genetically-modified, GFP-expressing HeLa cells and glyceraldehyde-3-phosphate dehydrogenase (GAPD) knockdown in human umbilical vein endothelial cells (HUVEC). Bare and PD liposomes coated with PEG113-DMA31 exhibit a 0.16+/-0.2 and 0.32+/-0.3 fraction of GFP knockdown, respectively. In contrast, direct siRNA administration and Oligofectamine complexed siRNA reduce GFP expression by 0.06+/-0.02 and 0.14+/-0.02 fractions, respectively. Our in vitro data indicates that polymer desorption from PD liposomes enhances siRNA-mediated gene knockdown.

Superparamagnetic Iron Oxide Nanoparticle-aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy

Microflow and Crack Formation Patterns in Drying Sessile Droplets of Liposomes Suspended in Trehalose Solutions

Anhydrobiotic preservation potentially provides a means of long-term storage of mammalian cells in carbohydrate glasses under ambient conditions. During desiccation, sessile droplets of glass-forming carbohydrate solutions exhibit complex phenomena, including fluid flow, droplet deformation, and crack formation, all of which may alter the cell preservation efficacy. Cell-sized liposomes were employed as a model system to explore these phenomena in diffusively dried sessile droplets of trehalose solutions. Two factors were identified that strongly influenced the features of the desiccated droplets: the underlying surface and the liposomes themselves. In particular, the surface altered the droplet shape as well as the microflow pattern and, in turn, the moisture conditions encountered by the liposomes during desiccation. A ring deposit formed when the droplets were dried on polystyrene, as would be expected owing to the capillary flow that generally occurs in pinned droplets. In contrast, when dried on the more hydrophilic glass slide, the resulting droplets were thinner, and the liposomes accumulated near their centers, which was an unexpected result likely owing to the glass-forming nature of trehalose solutions. As might be anticipated given the variations in liposome distribution, the choice of surface also influenced crack formation upon continued drying. In addition to providing a preferential path for drying, such cracks are relevant because they could inflict mechanical damage on cells. The liposomes themselves had an even more profound effect on crack formation; indeed, whereas cracks were found in all droplets containing liposomes, in their absence few of the droplets cracked at all, regardless of the surface type. These complex drying dynamics merit further investigation in the development of anhydrobiotic preservation protocols, particularly with regard to the role therein of surface hydrophobicity and the cells themselves.

Microfluidic Platform for Controlled Synthesis of Polymeric Nanoparticles

A central challenge in the development of drug-encapsulated polymeric nanoparticles is the inability to control the mixing processes required for their synthesis resulting in variable nanoparticle physicochemical properties. Nanoparticles may be developed by mixing and nanoprecipitation of polymers and drugs dissolved in organic solvents with nonsolvents. We used rapid and tunable mixing through hydrodynamic flow focusing in microfluidic channels to control nanoprecipitation of poly(lactic- co-glycolic acid)- b-poly(ethylene glycol) diblock copolymers as a model polymeric biomaterial for drug delivery. We demonstrate that by varying (1) flow rates, (2) polymer composition, and (3) polymer concentration we can optimize the size, improve polydispersity, and control drug loading and release of the resulting nanoparticles. This work suggests that microfluidics may find applications for the development and optimization of polymeric nanoparticles in the newly emerging field of nanomedicine.

The Biocompatibility of Mesoporous Silicates

Micro- and nano-mesoporous silicate particles are considered potential drug delivery systems because of their ordered pore structures, large surface areas and the ease with which they can be chemically modified. However, few cytotoxicity or biocompatibility studies have been reported, especially when silicates are administered in the quantities necessary to deliver low-potency drugs. The biocompatibility of mesoporous silicates of particle sizes approximately 150 nm, approximately 800 nm and approximately 4 microm and pore sizes of 3 nm, 7 nm and 16 nm, respectively, is examined here. In vitro, mesoporous silicates showed a significant degree of toxicity at high concentrations with mesothelial cells. Following subcutaneous injection of silicates in rats, the amount of residual material decreased progressively over 3 months, with good biocompatibility on histology at all time points. In contrast, intra-peritoneal and intra-venous injections in mice resulted in death or euthanasia. No toxicity was seen with subcutaneous injection of the same particles in mice. Microscopic analysis of the lung tissue of the mice indicated that death may be due to thrombosis. Although local tissue reaction to mesoporous silicates was benign, they caused severe systemic toxicity. This toxicity might be mitigated by modification of the materials.

New Opportunities: the Use of Nanotechnologies to Manipulate and Track Stem Cells

Nanotechnologies are emerging platforms that could be useful in measuring, understanding, and manipulating stem cells. Examples include magnetic nanoparticles and quantum dots for stem cell labeling and in vivo tracking; nanoparticles, carbon nanotubes, and polyplexes for the intracellular delivery of genes/oligonucleotides and protein/peptides; and engineered nanometer-scale scaffolds for stem cell differentiation and transplantation. This review examines the use of nanotechnologies for stem cell tracking, differentiation, and transplantation. We further discuss their utility and the potential concerns regarding their cytotoxicity.

Therapeutic RNAi Targeting PCSK9 Acutely Lowers Plasma Cholesterol in Rodents and LDL Cholesterol in Nonhuman Primates

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates low density lipoprotein receptor (LDLR) protein levels and function. Loss of PCSK9 increases LDLR levels in liver and reduces plasma LDL cholesterol (LDLc), whereas excess PCSK9 activity decreases liver LDLR levels and increases plasma LDLc. Here, we have developed active, cross-species, small interfering RNAs (siRNAs) capable of targeting murine, rat, nonhuman primate (NHP), and human PCSK9. For in vivo studies, PCSK9 and control siRNAs were formulated in a lipidoid nanoparticle (LNP). Liver-specific siRNA silencing of PCSK9 in mice and rats reduced PCSK9 mRNA levels by 50-70%. The reduction in PCSK9 transcript was associated with up to a 60% reduction in plasma cholesterol concentrations. These effects were shown to be mediated by an RNAi mechanism, using 5'-RACE. In transgenic mice expressing human PCSK9, siRNAs silenced the human PCSK9 transcript by >70% and significantly reduced PCSK9 plasma protein levels. In NHP, a single dose of siRNA targeting PCSK9 resulted in a rapid, durable, and reversible lowering of plasma PCSK9, apolipoprotein B, and LDLc, without measurable effects on either HDL cholesterol (HDLc) or triglycerides (TGs). The effects of PCSK9 silencing lasted for 3 weeks after a single bolus i.v. administration. These results validate PCSK9 targeting with RNAi therapeutics as an approach to specifically lower LDLc, paving the way for the development of PCSK9-lowering agents as a future strategy for treatment of hypercholesterolemia.

Nanoparticles for Gene Transfer to Human Embryonic Stem Cell Colonies

We develop biodegradable polymeric nanoparticles to facilitate nonviral gene transfer to human embryonic stem cells (hESCs). Small (approximately 200 nm), positively charged (approximately 10 mV) particles are formed by the self assembly of cationic, hydrolytically degradable poly(beta-amino esters) and plasmid DNA. By varying the end group of the polymer, we can tune the biophysical properties of the resulting nanoparticles and their gene-delivery efficacy. We created an OCT4-driven GFP hES cell line to allow the rapid identification of nanoparticles that facilitate gene transfer while maintaining an hESC undifferentiated state. Using this cell system, we synthesized nanoparticles that have gene delivery efficacy that is up to 4 times higher than that of the leading commercially available transfection agent, Lipofectamine 2000. Importantly, these materials have minimal toxicity and do not adversely affect hESC colony morphology or cause nonspecific differentiation.

Delivery of Small Interfering RNA for Inhibition of Endothelial Cell Apoptosis by Hypoxia and Serum Deprivation

RNA interference (RNAi) for anti-angiogenic or pro-apoptotic factors in endothelial cells (ECs) has great potential for the treatment of ischemic diseases by promoting angiogenesis or inhibiting apoptosis. Here, we report the utility of small interfering RNA (siRNA) in inhibiting EC apoptosis induced by tumor necrosis factor-alpha (TNF-alpha). siRNA was designed and synthesized targeting tumor necrosis factor-alpha receptor-1 (TNFR-1) and Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were cultured under in vitro hypoxic and serum-deprived conditions to simulate in vivo ischemic conditions. Two days after liposomal delivery of siRNA targeting TNFR-1 and SHP-1, significant silencing of each target (TNFR-1; 76.5% and SHP-1; 97.2%) was detected. Under serum-deprived hypoxic (1% oxygen) conditions, TNF-alpha expression in HUVECs increased relative to normoxic (20% oxygen) and serum-containing conditions. Despite enhanced TNF-alpha expression, suppression of TNFR-1 or SHP-1 by siRNA delivery not only enhanced expression of angiogenic factors (KDR/Flk-1 and eNOS) and anti-apoptotic factor (Bcl-xL) but also reduced expression of a pro-apoptotic factor (Bax). Transfection of TNFR-1 or SHP-1 siRNA significantly decreased the HUVEC apoptosis while significantly enhancing HUVEC proliferation and capillary formation. The present study demonstrates that TNFR-1 and SHP-1 may be useful targets for the treatment of myocardial or hindlimb ischemia.

A Review of Judah Folkman's Remarkable Achievements in Biomedicine

Assessing SiRNA Pharmacodynamics in a Luciferase-expressing Mouse

A significant barrier to the successful general development of small-interfering RNA (siRNA) therapeutics is the ability to deliver them systemically to target organs and cell types. In this study, we have developed a mouse strain that will facilitate the evaluation of the efficacy of siRNA delivery strategies. This strain contains robust ubiquitous expression of firefly luciferase from germ line Cre-mediated recombination of the ROSA26-LSL-Luc allele. We show that luciferase is highly and uniformly expressed in all tissues examined. Using this mouse model, we describe a facile assay that enables the assessment of the pharmacodynamics of a systemically delivered siRNA formulation. These mice can also be used as universal donors, enabling the efficient and sensitive monitoring of cell trafficking or tissue transplantation. The primary advantage of this approach is that siRNA efficacy against a nonessential target can be easily evaluated in any tissue. This strain should generally enhance the ability to rapidly screen, compare and optimize various siRNA formulations for tissue-targeted or -enhanced systemic delivery in a preclinical development setting.

FTO Polymorphisms Are Associated with Obesity but Not Diabetes Risk in Postmenopausal Women

The FTO gene was recently identified as a susceptibility locus for both obesity and type 2 diabetes by whole-genome association analyses of several European populations. We tested for an association between FTO risk alleles and obesity and diabetes in a well-characterized multiethnic cohort of postmenopausal women in the United States. We genotyped two most significantly associated single-nucleotide polymorphisms (SNPs) (rs9939609 and rs8050136) in intron 1 of FTO gene in a nested case-control study of 1,517 diabetes cases and 2,123 controls from the Women's Health Initiative-Observational Study (WHI-OS). The allelic frequencies of either rs9939609 or rs8050136 differed widely across four ethnic groups. The frequency of the rare allele A of rs9939609 among controls was much lower in Asians/Pacific Islanders (17%) than in blacks (45%), whites (40%), and Hispanics (31%). We found significant associations of rs9939609 with BMI and waist circumference in white and Hispanic women, but not among black and Asian/Pacific Islander women. On average, each copy of the risk-allele A at rs9939609 was significantly associated with 0.45 kg/m(2) increase in BMI (95% confidence interval (CI): 0.16-0.74; P = 0.004) and 0.97 cm increase in waist circumference (95% CI: 0.21-0.65; P = 0.0002). Similar results were observed for rs8050136. However, we found no significant genetic associations with diabetes risk, either within the full study sample or in any ethnic group. In conclusion, common genetic variants in the intron 1 of FTO gene may confer a modest susceptibility to obesity in an ethnicity-specific manner, but may be unlikely to contribute to a clinically significant diabetes risk.

Association Between Different Measures of Blood Pressure and Coronary Artery Calcium in Postmenopausal Women

The aim of this study was to determine the magnitude and significance of the associations among coronary artery calcium (CAC) and systolic blood pressure, diastolic blood pressure, pulse pressure, and mean arterial pressure. Women 50 to 59 years of age at baseline in the Women's Health Initiative clinical trial of conjugated equine estrogen underwent computed tomography scanning of the chest after the end of the trial. Blood pressures were measured twice with the participant in the seated position using a conventional mercury sphygmomanometer. The study included 1064 women with a mean age of 55.1 (2.8) years. The prevalence of a CAC score >0, >or=10, and >100 was 47%, 39%, and 19%, respectively. There was a linear association between the log-odds of any CAC and systolic blood pressure, whereas there was a curvilinear and inverse association with diastolic blood pressure. For any value of diastolic blood pressure, the probability of CAC increased with higher levels of systolic blood pressure, whereas for any given value of systolic blood pressure, the probability of any CAC decreased with higher levels of diastolic blood pressure. Also, a pulse pressure >or=55 mm Hg was associated with a higher odds (1.95; 95% CI, 1.24 to 3.06) for having any CAC, whereas individuals with isolated systolic hypertension had a 73% higher odds for CAC >0 (95% CI, 1.03 to 2.90; P=0.04). In postmenopausal women, higher levels of pulse pressure and systolic blood pressure were strong determinants of CAC, whereas diastolic blood pressure was inversely related.

Biodegradable Poly(polyol Sebacate) Polymers

We have developed a family of synthetic biodegradable polymers that are composed of structural units endogenous to the human metabolism, designated poly(polyol sebacate) (PPS) polymers. Material properties of PPS polymers can be tuned by altering the polyol monomer and reacting stiochiometric ratio of sebacic acid. These thermoset networks exhibited tensile Young's moduli ranging from 0.37+/-0.08 to 378+/-33 MPa with maximum elongations at break from 10.90+/-1.37% to 205.16+/-55.76%, and glass transition temperatures ranging from approximately 7-46 degrees C. In vitro degradation under physiological conditions was slower than in vivo degradation rates observed for some PPS polymers. PPS polymers demonstrated similar in vitro and in vivo biocompatibility compared to poly(L-lactic-co-glycolic acid) (PLGA).

Cell-compatible, Multicomponent Protein Arrays with Subcellular Feature Resolution

Targeted Delivery of Cisplatin to Prostate Cancer Cells by Aptamer Functionalized Pt(IV) Prodrug-PLGA-PEG Nanoparticles

Cisplatin is used to treat a variety of tumors, but dose limiting toxicities or intrinsic and acquired resistance limit its application in many types of cancer including prostate. We report a unique strategy to deliver cisplatin to prostate cancer cells by constructing Pt(IV)-encapsulated prostate-specific membrane antigen (PSMA) targeted nanoparticles (NPs) of poly(D,L-lactic-co-glycolic acid) (PLGA)-poly(ethylene glycol) (PEG)-functionalized controlled release polymers. By using PLGA-b-PEG nanoparticles with PSMA targeting aptamers (Apt) on the surface as a vehicle for the platinum(IV) compound c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)CH(2)CH(2)CH(3))(2)Cl(2)] (1), a lethal dose of cisplatin was delivered specifically to prostate cancer cells. PSMA aptamer targeted delivery of Pt(IV) cargos to PSMA(+) LNCaP prostate cancer cells by endocytosis of the nanoparticle vehicles was demonstrated using fluorescence microscopy by colocalization of green fluorescent labeled cholesterol-encapsulated NPs and early endosome marker EEA-1. The choice of linear hexyl chains in 1 was the result of a systematic study to optimize encapsulation and controlled release from the polymer without compromising either feature. Release of cisplatin from the polymeric nanoparticles after reduction of 1 and formation of cisplatin 1,2-intrastrand d(GpG) cross-links on nuclear DNA was confirmed by using a monoclonal antibody for the adduct. A comparison between the cytotoxic activities of Pt(IV)-encapsulated PLGA-b-PEG NPs with the PSMA aptamer on the surface (Pt-NP-Apt), cisplatin, and the nontargeted Pt(IV)-encapsulated NPs (Pt-NP) against human prostate PSMA-overexpressing LNCaP and PSMA(-) PC3 cancer cells revealed significant differences. The effectiveness of PSMA targeted Pt-NP-Apt nanoparticles against the PSMA(+) LNCaP cells is approximately an order of magnitude greater than that of free cisplatin.

Accordion-like Honeycombs for Tissue Engineering of Cardiac Anisotropy

Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (p<0.05); and (3) greater heart cell alignment (p<0.0001) than isotropic control scaffolds. Prototype bilaminar scaffolds with 3D interconnected pore networks yielded electrically excitable grafts with multi-layered neonatal rat heart cells. Accordion-like honeycombs can thus overcome principal structural-mechanical limitations of previous scaffolds, promoting the formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

Transdermal Drug Delivery

Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, noncavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin's barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase its impact on medicine.

Developing a Distributed Research Network to Conduct Population-based Studies and Safety Surveillance

The Developing Evidence to Inform Decisions about Effectiveness (DEcIDE) centers at the HMO Research Network Center for Education and Research on Therapeutics (HMORN CERT) and the University of Pennsylvania are developing a design for a scalable distributed research network (DRN) to support a wide array of purposes related to therapeutics, including comparative effectiveness, safety, and utilization, as well as quality of care research. The project will implement a system prototype, conduct a proof of principle research project on hypertension therapy, and make recommendations for future expansion of the network.

Nanoparticulate Delivery of Diphtheria Toxin DNA Effectively Kills Mesothelin Expressing Pancreatic Cancer Cells

Pancreatic cancer is the fourth leading cause of cancer-related deaths in this country, and there is currently no effective targeted treatment for this deadly disease. A dire need exists to rapidly translate our molecular understanding of this devastating disease into effective, novel therapeutic options. Mesothelin is a candidate target protein shown by a number of laboratories to be specifically overexpressed in pancreatic cancers and not in the adjacent normal tissue. Translational investigations have shown promising results using this molecule as a therapeutic target (e.g., vaccine strategies). In addition, the mesothelin promoter has been cloned and dissected and can therefore be used as a vehicle for regulating expression of DNA sequences. Using a novel, proven, biodegradable nanoparticulate system, we sought to target mesothelin-expressing pancreatic cancer cells with a potent suicide gene, diphtheria toxin-A (DT-A). We first confirmed reports that a majority of pancreatic cancer cell lines and resected pancreatic ductal adenocarcinoma specimens overexpressed mesothelin at the mRNA and protein levels. High mesothelin-expressing pancreatic cancer cell lines produced more luciferase than cell lines with undetectable mesothelin expression when transfected with a luciferase sequence under the regulation of the mesothelin promoter. We achieved dramatic inhibition of protein translation (>95%) in mesothelin-expressing pancreatic cancer cell lines when DT-A DNA, driven by the mesothelin promoter, was delivered to pancreatic cancer cells. We show that this inhibition effectively targets the death of pancreatic cancer cells that overexpress mesothelin. The work presented here provides evidence that this strategy will work in pre-clinical mouse pancreatic cancer models, and suggests that such a strategy will work in the clinical setting against the majority of pancreatic tumors, most of which overexpress mesothelin.

Outbreak of Adverse Reactions Associated with Contaminated Heparin

In January 2008, the Centers for Disease Control and Prevention began a nationwide investigation of severe adverse reactions that were first detected in a single hemodialysis facility. Preliminary findings suggested that heparin was a possible cause of the reactions.

Self-assembled Lipid--polymer Hybrid Nanoparticles: a Robust Drug Delivery Platform

We report the engineering of a novel lipid-polymer hybrid nanoparticle (NP) as a robust drug delivery platform, with high drug encapsulation yield, tunable and sustained drug release profile, excellent serum stability, and potential for differential targeting of cells or tissues. The NP comprises three distinct functional components: (i) a hydrophobic polymeric core where poorly water-soluble drugs can be encapsulated; (ii) a hydrophilic polymeric shell with antibiofouling properties to enhance NP stability and systemic circulation half-life; and (iii) a lipid monolayer at the interface of the core and the shell that acts as a molecular fence to promote drug retention inside the polymeric core, thereby enhancing drug encapsulation efficiency, increasing drug loading yield, and controlling drug release. The NP is prepared by self-assembly through a single-step nanoprecipitation method in a reproducible and predictable manner, making it potentially suitable for scale-up.

The Cardiovascular Research Network: a New Paradigm for Cardiovascular Quality and Outcomes Research

A clear need exists for a more systematic understanding of the epidemiology, diagnosis, and management of cardiovascular diseases. More robust data are also needed on how well clinical trials are translated into contemporary community practice and the associated resource use, costs, and outcomes.

Nanofabricated Collagen-inspired Synthetic Elastomers for Primary Rat Hepatocyte Culture

Synthetic substrates that mimic the properties of extracellular matrix proteins hold significant promise for use in systems designed for tissue engineering applications. In this report, we designed a synthetic polymeric substrate that is intended to mimic chemical, mechanical, and topological characteristics of collagen. We found that elastomeric poly(ester amide) substrates modified with replica-molded nanotopographic features enhanced initial attachment, spreading, and adhesion of primary rat hepatocytes. Further, hepatocytes cultured on nanotopographic substrates also demonstrated reduced albumin secretion and urea synthesis, which is indicative of strongly adherent hepatocytes. These results suggest that these engineered substrates can function as synthetic collagen analogs for in vitro cell culture.

Three-dimensional Conductive Constructs for Nerve Regeneration

The unique electrochemical properties of conductive polymers can be utilized to form stand-alone polymeric tubes and arrays of tubes that are suitable for guides to promote peripheral nerve regeneration. Noncomposite, polypyrrole (PPy) tubes ranging in inner diameter from 25 microm to 1.6 mm as well as multichannel tubes were fabricated by electrodeposition. While oxidation of the pyrrole monomer causes growth of the film, brief subsequent reduction allowed mechanical dissociation from the electrode mold, creating a stand-alone, conductive PPy tube. Conductive polymer nerve guides made in this manner were placed in transected rat sciatic nerves and shown to support nerve regeneration over an 8-week time period.

Poly(beta-amino Esters): Procedures for Synthesis and Gene Delivery

Non-viral gene delivery systems are promising as they avoid many problems of viral gene therapy by having increased design flexibility, high safety, large DNA cargo capacity, and ease of manufacture. Here, we describe the use of polymeric vectors, in particular biodegradable poly(beta-amino esters) (PBAEs), for non-viral gene delivery. These polymers are able to self-assemble with DNA and form positively charged gene delivery nanoparticles. Methods for synthesis of these polymers, particle self-assembly, and transfection using these particles are delineated. A standard protocol is presented as well as a high-throughput screening technique that can be used to more quickly optimize transfection parameters for efficient delivery.

In Vitro and in Vivo Degradation of Poly(1,3-diamino-2-hydroxypropane-co-polyol Sebacate) Elastomers

Biomaterials with a wide range of tunable properties are desirable for application-specific purposes. We have previously developed a class of elastomeric poly(ester amides) based on the amine alcohol 1,3-diamino-2-hydroxypropane termed poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) or APS. In this work, we have synthesized and characterized formulations of APS polymers and studied the degradation of these polymers in vitro and in vivo. It was found that the chemical, physical, and mechanical properties of APS polymers could be tuned by adjusting monomer feed ratios and polymerization conditions. The degradation kinetics could also be greatly influenced by altering the formulation of APS polymers. In vivo degradation half-lives ranged from 6 to approximately 100 weeks. Furthermore, the dominant degradation mechanism (i.e. hydrolytic or enzymatic) could be controlled by adjusting the specific formulation of the APS polymer. On the basis of the observed in vitro and in vivo biodegradation phenomena, we also propose that the primary modes of degradation are composition dependent.

PLGA-lecithin-PEG Core-shell Nanoparticles for Controlled Drug Delivery

Current approaches to encapsulate and deliver therapeutic compounds have focused on developing liposomal and biodegradable polymeric nanoparticles (NPs), resulting in clinically approved therapeutics such as Doxil/Caelyx and Genexol-PM, respectively. Our group recently reported the development of biodegradable core-shell NP systems that combined the beneficial properties of liposomal and polymeric NPs for controlled drug delivery. Herein we report the parameters that alter the biological and physicochemical characteristics, stability, drug release properties and cytotoxicity of these core-shell NPs. We further define scalable processes for the formulation of these NPs in a reproducible manner. These core-shell NPs consist of (i) a poly(D,L-lactide-co-glycolide) hydrophobic core, (ii) a soybean lecithin monolayer, and (iii) a poly(ethylene glycol) shell, and were synthesized by a modified nanoprecipitation method combined with self-assembly. Preparation of the NPs showed that various formulation parameters such as the lipid/polymer mass ratio and lipid/lipid-PEG molar ratio controlled NP physical stability and size. We encapsulated a model chemotherapy drug, docetaxel, in the NPs and showed that the amount of lipid coverage affected its drug release kinetics. Next, we demonstrated a potentially scalable process for the formulation, purification, and storage of NPs. Finally, we tested the cytotoxicity using MTT assays on two model human cell lines, HeLa and HepG2, and demonstrated the biocompatibility of these particles in vitro. Our data suggest that the PLGA-lecithin-PEG core-shell NPs may be a useful new controlled release drug delivery system.

A Drug-eluting Contact Lens

To formulate and characterize a drug-eluting contact lens designed to provide extended, controlled release of a drug.

Immunocompatibility Properties of Lipid-polymer Hybrid Nanoparticles with Heterogeneous Surface Functional Groups

Here we report the immunological characterization of lipid-polymer hybrid nanoparticles (NPs) and propose a method to control the levels of complement activation induced by these NPs. This method consists of the highly specific modification of the NP surface with methoxyl, carboxyl, and amine groups. Hybrid NPs with methoxyl surface groups induced the lowest complement activation, whereas the NPs with amine surface groups induced the highest activation. All possible combinations among carboxyl, amine, and methoxyl groups also activated the complement system to a certain extent. All types of NPs activated the complement system primarily via the alternative pathway rather than the lectin pathway. The classical pathway was activated to a very small extent by the NPs with carboxyl and amine surface groups. Human serum and plasma protein binding studies showed that these NPs had different protein binding patterns. Studies of both complement activation and coagulation activation suggested that NPs with methoxyl surface groups might be an ideal candidate for drug delivery applications, since they are not likely to cause any immunological adverse reaction in the human body.

Knocking Down Barriers: Advances in SiRNA Delivery

In the 10 years that have passed since the Nobel prize-winning discovery of RNA interference (RNAi), billions of dollars have been invested in the therapeutic application of gene silencing in humans. Today, there are promising data from ongoing clinical trials for the treatment of age-related macular degeneration and respiratory syncytial virus. Despite these early successes, however, the widespread use of RNAi therapeutics for disease prevention and treatment requires the development of clinically suitable, safe and effective drug delivery vehicles. Here, we provide an update on the progress of RNAi therapeutics and highlight novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids.

Incident Invasive Breast Cancer, Geographic Location of Residence, and Reported Average Time Spent Outside

There have been reports of greater breast cancer incidence and mortality at northern compared with southern latitudes postulated to be related to vitamin D exposure. Among 71,662 participants in the Women's Health Initiative Observational Study (WHIOS) free of cancer at baseline (1993-1998), associations were explored between incident invasive postmenopausal breast cancer (n = 2,535), over approximately 8.6 years follow-up, and the following: (a) region of residence at birth, age 15 years, age 35 years; (b) region of residence at WHIOS baseline; and (c) clinic center solar irradiance. Hazard ratios and 95% confidence intervals (CI) for breast cancer were estimated after adjustment for individual level confounders. There was no difference in breast cancer risk by region of earlier life, baseline residence, or solar irradiance measured in Langelys (gm-cal) per cm(2). There was an observed 15% decreased risk among women residing in areas of low versus high solar irradiance measured in Watts per m(2) (95% CI, 2-26%). However, the associated P(trend) of 0.20 was not significant. Conversely, women who reported spending on average <30 minutes versus >2 hours outside in daylight year round at WHIOS year 4 follow-up (n = 46,926), had a 20% (95% CI, 2-41%; P(trend) = 0.001) increased risk of breast cancer. In conclusion, region of residence and geographic solar irradiance are not consistently related to risk of breast cancer and may not be sufficient proxy measures for sunlight/vitamin D exposure. The observed association between time spent outside and breast cancer risk support the hypothesis that vitamin D may protect against breast cancer.

Multifunctional Nanoparticles for Prostate Cancer Therapy

Multifunctional nanoparticles promise significantly better treatment for prostate cancer. This review begins with a molecular and physiological overview of prostate cancer, including current treatments in various stages of disease development. Emerging nanoparticle technology in chemotherapy, hyperthermia therapy and gene therapy will be discussed. We highlight novel advances in nanoparticle technology for prostate cancer and indicate future challenges in the rational design of multifunctional nanoparticles, such as understanding tumor characteristics and the activation of the complement system.

Protein Nanoparticles Engineered to Sense Kinase Activity in MRI

We introduce a family of protein nanoparticles capable of sensing analytes in conjunction with magnetic resonance imaging (MRI). The new sensors are derived from the iron storage protein ferritin (Ft); they are designed and optimized using facile protein engineering methods, and self-assembled in cells harboring specific combinations of DNA coding sequences. As illustration, we show that suitably constructed Ft-based sensors can report activity of the important neural signaling enzyme protein kinase A (PKA). Phosphorylation of the engineered Ft-based nanoparticles by PKA promotes clustering and changes in T(2)-weighted MRI signal.

Impact of Nanotechnology on Drug Delivery

Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.

Re: Estrogen Plus Progestin Therapy and Breast Cancer in Recently Postmenopausal Women

Claudin-3 Gene Silencing with SiRNA Suppresses Ovarian Tumor Growth and Metastasis

Claudin-3 (CLDN3) is a tight junction protein that is overexpressed in 90% of ovarian tumors. Previous in vitro studies have indicated that CLDN3 overexpression promotes the migration, invasion, and survival of ovarian cancer cells. Here, we investigated the efficacy of lipidoid-formulated CLDN3 siRNA in 3 different ovarian cancer models. Intratumoral injection of lipidoid/CLDN3 siRNA into OVCAR-3 xenografts resulted in dramatic silencing of CLDN3, significant reduction in cell proliferation, reduction in tumor growth, and a significant increase in the number of apoptotic cells. Intraperitoneal injection of lipidoid-formulated CLDN3 siRNA resulted in a substantial reduction in tumor burden in MISIIR/TAg transgenic mice and mice bearing tumors derived from mouse ovarian surface epithelial cells. Ascites development was reduced in CLDN3 siRNA-treated mice, suggesting the treatment effectively suppressed metastasis. Toxicity was not observed after multiple i.p. injections. Importantly, treatment of mice with nonimmunostimulatory 2'-OMe modified CLDN3 siRNA was as effective in suppressing tumor growth as unmodifed siRNA. These results suggest that lipidoid-formulated CLDN3 siRNA has potential as a therapeutic for ovarian cancer.

Development of Lipidoid-siRNA Formulations for Systemic Delivery to the Liver

RNA interference therapeutics afford the potential to silence target gene expression specifically, thereby blocking production of disease-causing proteins. The development of safe and effective systemic small interfering RNA (siRNA) delivery systems is of central importance to the therapeutic application of siRNA. Lipid and lipid-like materials are currently the most well-studied siRNA delivery systems for liver delivery, having been utilized in several animal models, including nonhuman primates. Here, we describe the development of a multicomponent, systemic siRNA delivery system, based on the novel lipid-like material 98N(12)-5(1). We show that in vivo delivery efficacy is affected by many parameters, including the formulation composition, nature of particle PEGylation, degree of drug loading, and biophysical parameters such as particle size. In particular, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids can result in significant effects on in vivo efficacy. The lead formulation developed is liver targeted (>90% injected dose distributes to liver) and can induce fully reversible, long-duration gene silencing without loss of activity following repeat administration.

Biocompatibility of Biodegradable Semiconducting Melanin Films for Nerve Tissue Engineering

The advancement of tissue engineering is contingent upon the development and implementation of advanced biomaterials. Conductive polymers have demonstrated potential for use as a medium for electrical stimulation, which has shown to be beneficial in many regenerative medicine strategies including neural and cardiac tissue engineering. Melanins are naturally occurring pigments that have previously been shown to exhibit unique electrical properties. This study evaluates the potential use of melanin films as a semiconducting material for tissue engineering applications. Melanin thin films were produced by solution processing and the physical properties were characterized. Films were molecularly smooth with a roughness (R(ms)) of 0.341 nm and a conductivity of 7.00+/-1.10 x 10(-5)S cm(-1) in the hydrated state. In vitro biocompatibility was evaluated by Schwann cell attachment and growth as well as neurite extension in PC12 cells. In vivo histology was evaluated by examining the biomaterial-tissue response of melanin implants placed in close proximity to peripheral nerve tissue. Melanin thin films enhanced Schwann cell growth and neurite extension compared to collagen films in vitro. Melanin films induced an inflammation response that was comparable to silicone implants in vivo. Furthermore, melanin implants were significantly resorbed after 8 weeks. These results suggest that solution-processed melanin thin films have the potential for use as a biodegradable semiconducting biomaterial for use in tissue engineering applications.

A Novel Mechanism is Involved in Cationic Lipid-mediated Functional SiRNA Delivery

A key challenge for therapeutic application of RNA interference is to efficiently deliver synthetic small interfering RNAs (siRNAs) into target cells that will lead to the knockdown of the target transcript (functional siRNA delivery). To facilitate rational development of nonviral carriers, we have investigated by imaging, pharmacological and genetic approaches the mechanisms by which a cationic lipid carrier mediates siRNA delivery into mammalian cells. We show that approximately 95% of siRNA lipoplexes enter the cells through endocytosis and persist in endolysosomes for a prolonged period of time. However, inhibition of clathrin-, caveolin-, or lipid-raft-mediated endocytosis or macropinocytosis fails to inhibit the knockdown of the target transcript. In contrast, depletion of cholesterol from the plasma membrane has little effect on the cellular uptake of siRNA lipoplexes, but it abolishes the target transcript knockdown. Furthermore, functional siRNA delivery occurs within a few hours and is gradually inhibited by lowering temperatures. These results demonstrate that although endocytosis is responsible for the majority of cellular uptake of siRNA lipoplexes, a minor pathway, probably mediated by fusion between siRNA lipoplexes and the plasma membrane, is responsible for the functional siRNA delivery. Our findings suggest possible directions for improving functional siRNA delivery by cationic lipids.

Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-focusing Device for Controlled Drug Delivery

Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several therapies approved by the US Food and Drug Administration. Conventional emulsion-based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug-loaded microparticles from biodegradable polymers using the microfluidic flow-focusing (FF) devices and the drug-delivery properties of those particles. Particles are engineered with defined sizes, ranging from 10 microm to 50 microm. These particles are nearly monodisperse (polydispersity index = 3.9%). A model amphiphilic drug (bupivacaine) is incorporated within the biodegradable matrix of the particles. Kinetic analysis shows that the release of the drug from these monodisperse particles is slower than that from conventional methods of the same average size but a broader distribution of sizes and, most importantly, exhibit a significantly lower initial burst than that observed with conventional particles. The difference in the initial kinetics of drug release is attributed to the uniform distribution of the drug inside the particles generated using the microfluidic methods. These results demonstrate the utility of microfluidic FF for the generation of homogenous systems of particles for the delivery of drugs.

A Novel High-throughput Cell-based Method for Integrated Quantification of Type I Interferons and in Vitro Screening of Immunostimulatory RNA Drug Delivery

A hallmark of immune activation by certain RNA sequences is the generation of interferon responses. However, the study of immunostimulatory RNA (isRNA) has been hindered by costly and slow methods, particularly in vitro. We have developed a cell-based assay to detect human type I interferon (IFN) that reliably senses both IFN-alpha and IFN-beta simultaneously. The human 293T cell line was stably transfected with a fusion gene of monomeric red fluorescent protein (mRFP) under the transcriptional control of an interferon-stimulated response element (ISRE). High levels of mRFP are expressed following activation of the type I IFN receptor (IFNAR). Using this method, detection limits for IFN similar to that of ELISA can be achieved but with a greater dynamic range and in a high-throughput manner. As a proof of concept, we utilized this method to screen a library of cationic lipid-like materials that form nanoparticle complexes with RNA for induction of innate immune responses in vitro. We expect the screening and detection methods described herein may provide a useful tool in elucidating mechanisms that govern the delivery of RNA molecules to effector cells and receptors of the innate immune system. We apply this tool to investigate isRNA drug delivery, but it may also find use in other applications for which high-throughput detection of type 1 IFN is desired.

Engineering Retinal Progenitor Cell and Scrollable Poly(glycerol-sebacate) Composites for Expansion and Subretinal Transplantation

Retinal degenerations cause permanent visual loss and affect millions world-wide. Presently, a novel treatment highlights the potential of using biodegradable polymer scaffolds to induce differentiation and deliver retinal progenitor cells for cell replacement therapy. In this study, we engineered and analyzed a micro-fabricated polymer, poly(glycerol sebacate) (PGS) scaffold, whose useful properties include biocompatibility, elasticity, porosity, and a microtopology conducive to mouse retinal progenitor cell (mRPC) differentiation. In vitro proliferation assays revealed that PGS held up to 86,610 (+/-9993) mRPCs per square millimeter, which were retained through simulated transplantations. mRPCs adherent to PGS differentiated toward mature phenotypes as evidenced by changes in mRNA, protein levels, and enhanced sensitivity to glutamate. Transplanted composites demonstrated long-term mRPC survival and migrated cells exhibited mature marker expression in host retina. These results suggest that combining mRPCs with PGS scaffolds for subretinal transplantation is a practical strategy for advancing retinal tissue engineering as a restorative therapy.

Prolonged Duration Local Anesthesia with Minimal Toxicity

Injectable local anesthetics that would last for many days could have a marked impact on periprocedural care and pain management. Formulations have often been limited in duration of action, or by systemic toxicity, local tissue toxicity from local anesthetics, and inflammation. To address those issues, we developed liposomal formulations of saxitoxin (STX), a compound with ultrapotent local anesthetic properties but little or no cytotoxicity. In vitro, the release of bupivacaine and STX from liposomes depended on the lipid composition and on whether dexamethasone was incorporated. In cell culture, bupivacaine, but not STX, was myotoxic (to C2C12 cells) and neurotoxic (to PC12 cells) in a concentration- and time-dependent manner. Liposomal formulations containing combinations of the above compounds produced sciatic nerve blockade lasting up to 7.5 days (with STX + dexamethasone liposomes) in male Sprague-Dawley rats. Systemic toxicity only occurred where high loadings of dexamethasone increased the release of liposomal STX. Mild myotoxicity was only seen in formulations containing bupivacaine. There was no nerve injury on Epon-embedded sections, and these liposomes did not up-regulate the expression of 4 genes associated with nerve injury in the dorsal root ganglia. These results suggest that controlled release of STX and similar compounds can provide very prolonged nerve blocks with minimal systemic and local toxicity.

A Conversation with Robert Langer: Pioneering Biomedical Scientist and Engineer. Interview by Paul S. Weiss

Blockade of Peroxynitrite-induced Neural Stem Cell Death in the Acutely Injured Spinal Cord by Drug-releasing Polymer

Therapeutic impact of neural stem cells (NSCs) for acute spinal cord injury (SCI) has been limited by the rapid loss of donor cells. Neuroinflammation is likely the cause. As there are close temporal-spatial correlations between the inducible nitric oxide (NO) synthase expression and the donor NSC death after neurotrauma, we reasoned that NO-associated radical species might be the inflammatory effectors which eliminate NSC grafts and kill host neurons. To test this hypothesis, human NSCs (hNSCs: 5 x 10(4) to 2 x 10(6) per milliliter) were treated in vitro with "plain" medium, 20 microM glutamate, or donors of NO and peroxynitrite (ONOO(-); 100 and 400 microM of spermine or DETA NONOate, and SIN-1, respectively). hNSC apoptosis primarily resulted from SIN-1 treatment, showing ONOO(-)-triggered protein nitration and the activation of p38 MAPK, cytochrome c release, and caspases. Therefore, cell death following post-SCI (p.i.) NO surge may be mediated through conversion of NO into ONOO(-). We subsequently examined such causal relationship in a rat model of dual penetrating SCI using a retrievable design of poly-lactic-co-glycolic acid (PLGA) scaffold seeded with hNSCs that was shielded by drug-releasing polymer. Besides confirming the ONOO(-)-induced cell death signaling, we demonstrated that cotransplantation of PLGA film embedded with ONOO(-) scavenger, manganese (III) tetrakis (4-benzoic acid) porphyrin, or uric acid (1 micromol per film), markedly protected hNSCs 24 hours p.i. (total: n = 10). Our findings may provide a bioengineering approach for investigating mechanisms underlying the host microenvironment and donor NSC interaction and help formulate strategies for enhancing graft and host cell survival after SCI.

Gold, Poly(beta-amino Ester) Nanoparticles for Small Interfering RNA Delivery

The safe and effective delivery of RNA therapeutics remains the major barrier to their broad clinical application. Here we develop a new nanoparticulate delivery system based on inorganic particles and biodegradable polycations. First, gold nanoparticles were modified with the hydrophilic polymer poly(ethylene glycol) (PEG), and then small interfering RNA (siRNA) was conjugated to the nanoparticles via biodegradable disulfide linkages, with approximately 30 strands of siRNA per nanoparticle. The particles were then coated with a library of end-modified poly(beta-amino ester)s (PBAEs), previously identified as capable of facilitating intracellular DNA delivery. Nanoparticulate formulations developed here facilitate high levels of in vitro siRNA delivery, facilitating delivery as good or better than the commercially available lipid reagent, Lipofectamine 2000.

Progress in Tissue Engineering

Implantable Diagnostic Device for Cancer Monitoring

Biopsies provide required information to diagnose cancer but, because of their invasiveness, they are difficult to use for managing cancer therapy. The ability to repeatedly sample the local environment for tumor biomarker, chemotherapeutic agent, and tumor metabolite concentrations could improve early detection of metastasis and personalized therapy. Here we describe an implantable diagnostic device that senses the local in vivo environment. This device, which could be left behind during biopsy, uses a semi-permeable membrane to contain nanoparticle magnetic relaxation switches. A cell line secreting a model cancer biomarker produced ectopic tumors in mice. The transverse relaxation time (T(2)) of devices in tumor-bearing mice was 20+/-10% lower than devices in control mice after 1 day by magnetic resonance imaging (p<0.01). Short term applications for this device are numerous, including verification of successful tumor resection. This may represent the first continuous monitoring device for soluble cancer biomarkers in vivo.

The Evolution of Biomaterials. Interview by Alison Stoddart and Victoria Cleave

Arpad Gerster and Max Thorek Contributions to American Surgery

The legacy and the influence on American surgery is discussed of two Hungarian born surgeons: Arpad Gerster (1848-1923) and Max Thorek (1880-1960). Both of them were born in Northern Hungary, then part of the Austro-Hungarian Monarchy, today Slovakia. Gerster got his medical education in Vienna The influence of Theodor Billroth left everlasting impressions in him. In 1874 he arrived in New York and became the first doctor in town who practiced exclusively surgery. He became an attending surgeon in The German Hospital and later at Mount Sinai Hospital. Gerster modernized the hospital's functions and services, introducing the rotation system, and also made the original observation that dissemination of cancer may be caused by surgery. His aseptic methods were revolutionary at the time. Max Thorek arrived in Chicago in 1897. With a fantastic endurance he overwhelmed all barriers and became a doctor. He started his practice in one of Chicago's poor immigrant neighborhoods, but stepwise he could excel and in 1911 he co-founded The American Hospital. His ideas of modernizing surgery became reality. Thorek is one of the first who practiced plastic surgery, and his contribution by writing about surgical errors and safeguards became a great success. He founded the International College of Surgeons, a result of his widespread relations among surgeons all over the world. The parallels in the lives of these great surgeons: solid education, knowledge of languages, talent for music, literature, and arts, creative thinking combined with hard work, good humor, as well as a social conscience led them to make groundbreaking contributions to American and international surgery.

Benefits and Risks of Postmenopausal Hormone Therapy when It is Initiated Soon After Menopause

The authors further analyzed results from the Women's Health Initiative randomized trials (1993-2004) of conjugated equine estrogens, with or without medroxyprogesterone acetate, focusing on health benefits versus risks among women who initiated hormone therapy soon after menopause. Data from the Women's Health Initiative observational study (1993-2004) were included in some analyses for additional precision. Results are presented here for incident coronary heart disease, stroke, venous thromboembolism, breast cancer, colorectal cancer, endometrial cancer, or hip fracture; death from other causes; a summary global index; total cancer; and total mortality. Hazard ratios for breast cancer and total cancer were comparatively higher (P < 0.05) among women who initiated hormone therapy soon after menopause, for both regimens. Among these women, use of conjugated equine estrogens appeared to produce elevations in venous thromboembolism and stroke and a reduction in hip fracture. Estrogen plus progestin results among women who initiated use soon after menopause were similar for venous thromboembolism, stroke, and hip fracture but also included evidence of longer-term elevations in breast cancer, total cancer, and the global index. These analyses provide little support for the hypothesis of favorable effects among women who initiate postmenopausal estrogen use soon after menopause, either for coronary heart disease or for health benefits versus risk indices considered.

Formulation/preparation of Functionalized Nanoparticles for in Vivo Targeted Drug Delivery

Targeted cancer therapy allows the delivery of therapeutic agents to cancer cells without incurring undesirable side effects on the neighboring healthy tissues. Over the past decade, there has been an increasing interest in the development of advanced cancer therapeutics using targeted nanoparticles. Here we describe the preparation of drug-encapsulated nanoparticles formulated with biocompatible and biodegradable poly(D: ,L: -lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-b-PEG) copolymer and surface functionalized with the A10 2-fluoropyrimidine ribonucleic acid aptamers that recognize the extracellular domain of prostate-specific membrane antigen (PSMA), a well-characterized antigen expressed on the surface of prostate cancer cells. We show that the self-assembled nanoparticles can selectively bind to PSMA-targeted prostate cancer cells in vitro and in vivo. This formulation method may contribute to the development of highly selective and effective cancer therapeutic and diagnostic devices.

Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function

The interaction of mammalian cells with nanoscale topography has proven to be an important signaling modality in controlling cell function. Naturally occurring nanotopographic structures within the extracellular matrix present surrounding cells with mechanotransductive cues that influence local migration, cell polarization, and other functions. Synthetically nanofabricated topography can also influence cell morphology, alignment, adhesion, migration, proliferation, and cytoskeleton organization. We review the use of in vitro synthetic cell-nanotopography interactions to control cell behavior and influence complex cellular processes, including stem-cell differentiation and tissue organization. Future challenges and opportunities in cell-nanotopography engineering are also discussed, including the elucidation of mechanisms and applications in tissue engineering.

Cell-responsive Hydrogel for Encapsulation of Vascular Cells

The in vitro potential of a synthetic matrix metalloproteinase (MMP)-responsive poly(ethylene glycol) (PEG)-based hydrogel as a bioactive co-encapsulation system for vascular cells and a small bioactive peptide, thymosin beta4 (Tbeta4), was examined. We show that the physical incorporation of Tbeta4 in this bioactive matrix creates a three-dimensional (3D) environment conducive for human umbilical vein endothelial cell (HUVEC) adhesion, survival, migration and organization. Gels with entrapped Tbeta4 increased the survival of HUVEC compared to gels without Tbeta4, and significantly up-regulated the endothelial genes vascular endothelial-cadherin and angiopoietin-2, whereas von Willebrand factor was significantly down-regulated. Incorporation of Tbeta4 significantly increased MMP-2 and MMP-9 secretion of encapsulated HUVEC. The gel acts as a controlled Tbeta4-release system, as MMP-2 and MMP-9 enzymes trigger the release. In addition, Tbeta4 facilitated HUVEC attachment and induced vascular-like network formation upon the PEG-hydrogels. These MMP-responsive PEG-hydrogels may thus serve as controlled co-encapsulation system of vascular cells and bioactive factors for in situ regeneration of ischemic tissues.

Dehydroepiandrosterone Pretreatment Alters the Ischaemia/reperfusion-induced VEGF, IL-1 and IL-6 Gene Expression in Acute Renal Failure

Beneficial effects of dehydroepiandrosterone (DHEA) pretreatment were reported in ischaemia/reperfusion (I/R)-induced kidney damage.

Locally Delivered Growth Factor Enhances the Angiogenic Efficacy of Adipose-derived Stromal Cells Transplanted to Ischemic Limbs

Ischemia is a potentially fatal medical event that is associated with as many as 30% of all deaths. Stem cell therapy offers significant therapeutic promise, but poor survival following transplantation to ischemic tissue limits its efficacy. Here we demonstrate that nanosphere-mediated growth factor delivery can enhance the survival of transplanted human adipose-derived stromal cells (hADSCs) and secretion of human angiogenic growth factors per cell, and substantially improve therapeutic efficacy of hADSCs. In vitro, in hypoxic (1% oxygen) and serum-deprived conditions that simulate in vivo ischemia, fibroblast growth factor-2 (FGF2) significantly reduced hADSC apoptosis and enhanced angiogenic growth factor secretion. In vivo, hADSCs delivered intramuscularly into ischemic hind limbs in combination with FGF2 resulted in significant improvements in limb survival and blood perfusion, as well as survival of the transplanted hADSCs and secretion of human angiogenic growth factors (i.e., vascular endothelial growth factor, hepatocyte growth factor, and FGF2). Interestingly, the majority of transplanted hADSCs were localized adjacent to the microvessels rather than being incorporated into them, suggesting that their major contribution to angiogenesis might be to increase paracrine secretion of angiogenic growth factors. This study demonstrates the potential of hADSCs in combination with growth factors for use in the treatment of ischemia.

High-throughput Membrane Surface Modification to Control NOM Fouling

A novel method for synthesis and screening of fouling-resistant membrane surfaces was developed by combining a high-throughput platform (HTP) approach together with photoinduced graft polymerization (PGP)forfacile modification of commercial poly(aryl sulfone) membranes. This method is an inexpensive, fast, simple, reproducible, and scalable approach to identify fouling-resistant surfaces appropriate for a specific feed. In this research, natural organic matter (NOM)-resistant surfaces were synthesized and indentified from a library of 66 monomers. Surfaces were prepared via graft polymerization onto poly(ether sulfone) (PES) membranes and were evaluated using an assay involving NOM adsorption, followed by pressure-driven-filtration. In this work new and previously tested low-fouling surfaces for NOM are identified, and their ability to mitigate NOM and protein (bovine serum albumin)fouling is compared. The best-performing monomers were the zwitterion [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide, and diacetone acrylamide, a neutral monomer containing an amide group. Other excellent surfaces were synthesized from amides, amines, basic monomers, and long-chain poly(ethylene) glycols. Bench-scale studies conducted for selected monomers verified the scalability of HTP-PGP results. The results and the synthesis and screening method presented here offer new opportunities for choosing new membrane chemistries that minimize NOM fouling.

Drug Delivery-mediated Control of RNA Immunostimulation

RNA interference (RNAi) has generated significant interest as a strategy to suppress viral infection, but in some cases antiviral activity of unmodified short-interfering RNA (siRNA) has been attributed to activation of innate immune responses. We hypothesized that immunostimulation by unmodified siRNA could mediate both RNAi as well as innate immune stimulation depending on the mode of drug delivery. We investigated the potential of immunostimulatory RNAs (isRNAs) to suppress influenza A virus in vivo in the mouse lung. Lipidoid 98N12-5(1) formulated with unmodified siRNA targeting the influenza nucleoprotein gene exhibited antiviral activity. Formulations were optimized to increase antiviral activity, but the antiviral activity of lipidoid-delivered siRNA did not depend on sequence homology to the influenza genome as siRNA directed against unrelated targets also suppressed influenza replication in vivo. This activity was primarily attributed to enhancement of innate immune stimulation by lipidoid-mediated delivery, which indicates increased toll-like receptor (TLR) activation by siRNA. Certain chemical modifications to the siRNA backbone, which block TLR7/8 activation but retain in vitro RNAi activity, prevented siRNA-mediated antiviral activity despite enhanced lipidoid-mediated delivery. Here, we demonstrate that innate immune activation caused by unmodified siRNA can have therapeutically relevant effects, and that these non-RNAi effects can be controlled through chemical modifications and drug delivery.

High Throughput Optimization of Stem Cell Microenvironments

Stem cells have great potential as cell sources for regenerative medicine due to both their self-renewal and multi-lineage differentiation capacity. Despite advances in the field of stem cell biology, major challenges remain before stem cells can be widely used for therapeutic purposes. One challenge is to develop reproducible methods to control stem cell growth and differentiation. The niche in which stem cells reside is a complex, multi-factorial environment. In contrast to using cells alone, biomaterials can provide initial structural support, and allow cells to adhere, proliferate and differentiate in a three-dimensional environment. Researchers have incorporated signals into the biomaterials that can promote desired cell functions in a spatially and temporally controlled manner. Despite progress in biomaterial design and methods to modulate cellular behavior, many of the complex signal networks that regulate cell-material interactions remain unclear. Due to the vast numbers of material properties to be explored and the complexity of cell-surface interactions, it is often difficult to optimize stem cell microenvironments using conventional, iterative approaches. To address these challenges, high throughput screening of combinatorial libraries has emerged as a novel approach to achieve rapid screening with reduced materials and costs. In this review, we discuss recent research in the area of high throughput approaches for characterization and optimization of cellular interactions with their microenvironments. In contrast to conventional approaches, screening combinatorial libraries can result in the discovery of unexpected material solutions to these complex problems.

Nanoparticle-delivered Suicide Gene Therapy Effectively Reduces Ovarian Tumor Burden in Mice

There is currently no effective therapy for patients with advanced ovarian cancer. To address the need for a more effective treatment for this deadly disease, we conducted preclinical tests in ovarian tumor-bearing mice to evaluate the therapeutic efficacy of using a cationic biodegradable poly(beta-amino ester) polymer as a vector for nanoparticulate delivery of DNA encoding a diphtheria toxin suicide protein (DT-A). The promoter sequences of two genes that are highly active in ovarian tumor cells, MSLN and HE4, were used to target DT-A expression to tumor cells. Administration of DT-A nanoparticles directly to s.c. xenograft tumors and to the peritoneal cavity of mice bearing primary and metastatic ovarian tumors resulted in a significant reduction in tumor mass and a prolonged life span compared to control mice. Minimal nonspecific tissue and blood chemistry toxicity was observed following extended treatment with nanoparticles. DT-A nanoparticle therapy suppressed tumor growth more effectively than treatment with clinically relevant doses of cisplatin and paclitaxel. Our findings suggest that i.p. administration of polymeric nanoparticles to deliver DT-A encoding DNA, combined with transcriptional regulation to target gene expression to ovarian tumor cells, holds promise as an effective therapy for advanced-stage ovarian cancer.

Efficacy, Safety, and Tolerability of Low-dose Hormone Therapy in Managing Menopausal Symptoms

Use of the lowest clinically effective dose of postmenopausal hormone therapy conforms to current recommendations and good clinical practice. Although accumulating evidence demonstrates the efficacy and tolerability of low hormone therapy doses, data about their use are limited by a lack of long-term, randomized studies. This review evaluates current evidence on the efficacy, safety, and tolerability of these preparations and their role in menopausal management.

A Magnetically Triggered Composite Membrane for On-demand Drug Delivery

Nanocomposite membranes based on thermosensitive, poly(N-isopropylacrylamide)-based nanogels and magnetite nanoparticles have been designed to achieve "on-demand" drug delivery upon the application of an oscillating magnetic field. On-off release of sodium fluorescein over multiple magnetic cycles has been successfully demonstrated using prototype membrane-based devices. The total drug dose delivered was directly proportional to the duration of the "on" pulse. The membranes were noncytotoxic, were biocompatible, and retained their switchable flux properties after 45 days of subcutaneous implantation.

Microfabrication of Homogenous, Asymmetric Cell-laden Hydrogel Capsules

Cell encapsulation has been broadly investigated as a technology to provide immunoprotection for transplanted endocrine cells. Here we develop a new fabrication method that allows for rapid, homogenous microencapsulation of insulin-secreting cells with varying microscale geometries and asymmetrically modified surfaces. Micromolding systems were developed using polypropylene mesh, and the material/surface properties associated with efficient encapsulation were identified. Cells encapsulated using these methods maintain desirable viability and preserve their ability to proliferate and secrete insulin in a glucose-responsive manner. This new cell encapsulation approach enables a practical route to an inexpensive and convenient process for the generation of cell-laden microcapsules without requiring any specialized equipment or microfabrication process.

Orthogonal Analytical Approaches to Detect Potential Contaminants in Heparin

Heparin is a widely used anticoagulant and antithrombotic agent. Recently, a contaminant, oversulfated chondroitin sulfate (OSCS), was discovered within heparin preparations. The presence of OSCS within heparin likely led to clinical manifestations, most prevalently, hypotension and abdominal pain leading to the deaths of several dozens of patients. Given the biological effects of OSCS, one continuing item of concern is the ability for existing methods to identify other persulfonated polysaccharide compounds that would also have anticoagulant activity and would likely elicit a similar activation of the contact system. To complete a more extensive analysis of the ability for NMR and capillary electrophoresis (CE) to capture a broader array of potential contaminants within heparin, we completed a systematic study of NMR, both mono- and bidimensional, and CE to detect both various components of sidestream heparin and their persulfonated derivatives. We show that given the complexity of heparin samples, and the requirement to ensure their purity and safety, use of orthogonal analytical techniques is effective at detecting an array of potential contaminants that could be present.

Nanoparticle-delivered Multimeric Soluble CD40L DNA Combined with Toll-Like Receptor Agonists As a Treatment for Melanoma

Stimulation of CD40 or Toll-Like Receptors (TLR) has potential for tumor immunotherapy. Combinations of CD40 and TLR stimulation can be synergistic, resulting in even stronger dendritic cell (DC) and CD8+ T cell responses. To evaluate such combinations, established B16F10 melanoma tumors were injected every other day X 5 with plasmid DNA encoding a multimeric, soluble form of CD40L (pSP-D-CD40L) either alone or combined with an agonist for TLR1/2 (Pam(3)CSK(4) ), TLR2/6 (FSL-1 and MALP2), TLR3 (polyinosinic-polycytidylic acid, poly(I:C)), TLR4 ( monophosphoryl lipid A, MPL), TLR7 (imiquimod), or TLR9 (Class B CpG phosphorothioate oligodeoxynucleotide, CpG). When used by itself, pSP-D-CD40L slowed tumor growth and prolonged survival, but did not lead to cure. Of the TLR agonists, CpG and poly(I:C) also slowed tumor growth, and the combination of these two TLR agonists was more effective than either agent alone. The triple combination of intratumoral pSP-D-CD40L + CpG + poly(I:C) markedly slowed tumor growth and prolonged survival. This treatment was associated with a reduction in intratumoral CD11c+ dendritic cells and an influx of CD8+ T cells. Since intratumoral injection of plasmid DNA does not lead to efficient transgene expression, pSP-D-CD40L was also tested with cationic polymers that form DNA-containing nanoparticles which lead to enhanced intratumoral gene expression. Intratumoral injections of pSP-D-CD40L-containing nanoparticles formed from polyethylenimine (PEI) or C32 (a novel biodegradable poly(B-amino esters) polymer) in combination with CpG + poly(I:C) had dramatic antitumor effects and frequently cured mice of B16F10 tumors. These data confirm and extend previous reports that CD40 and TLR agonists are synergistic and demonstrate that this combination of immunostimulants can significantly suppress tumor growth in mice. In addition, the enhanced effectiveness of nanoparticle formulations of DNA encoding immunostimulatory molecules such as multimeric, soluble CD40L supports the further study of this technology for tumor immunotherapy.

Aspirin Use, Dose, and Clinical Outcomes in Postmenopausal Women with Stable Cardiovascular Disease: the Women's Health Initiative Observational Study

Despite compelling evidence that aspirin reduces fatal and nonfatal vascular events among the overall population in various settings, women have frequently been underrepresented and their data underreported. We sought to evaluate the relationship between aspirin use, dose (81 or 325 mg), and clinical outcomes among postmenopausal women with stable cardiovascular disease (CVD).

Perspectives and Challenges in Tissue Engineering and Regenerative Medicine

Rheological Blends for Drug Delivery. I. Characterization in Vitro

Rheological blends of hyaluronic acid (HA) and hydroxypropylmethyl cellulose (HPMC) are attractive as injectable drug delivery vehicles given their shear thinning viscoelastic rheological properties and excellent biocompatibility. In this study, the rheological and water binding properties of HA-HPMC blends are investigated to optimize both the injectability and the drug release kinetics of polymer blends. The time required to release 75% of a bupivacaine payload was correlated with the overall polymer concentration of the blend and the water binding properties of the constituent polymers. This correlation enables the tuning of drug release kinetics over a range of several hours according to the total concentration and ratio of the polymers used in the blend. The injectability is also promoted by polymer blending; HPMC suppresses the high yield stress of HA solutions, whereas HA induces flow instabilities in the needle, which facilitate blend injection via plug flow. Consequently, significantly higher polymer concentrations can be injected as blends compared with that achievable with either of the polymers alone, extending the potential of these polymers for drug delivery.

Three-dimensional Hydrogel Model Using Adipose-derived Stem Cells for Vocal Fold Augmentation

Adipose-derived stem cells (ASCs) may provide a clinical option for rebuilding damaged superficial lamina propria of the vocal fold. We investigated the effects of five hydrogels (hyaluronic acid [HA], collagen, fibrin, and cogels of fibrin-collagen and fibrin-HA) on the differentiation of ASCs, with the long-term goal of establishing the conditions necessary for controlling the differentiation of ASC into the functional equivalent of superficial lamina propria fibroblasts. Human ASCs were isolated and characterized by fluorescence-activated cell sorting and real-time polymerase chain reaction. According to fluorescence-activated cell sorting and gene analysis, over 90% of isolated ASCs expressed adult stem cell surface markers and expressed adult stem cell genes. Scaffold-specific gene expression and morphology were assessed by culturing the ASCs in three-dimensional hydrogels. Twofold higher amounts of total DNA were detected in fibrin and cogel cultures than in collagen and HA cultures. Elastin expression was significantly higher in cells grown in fibrin-based gels than in cells grown in other gels. Cells grown in the cogels showed elongated morphology, expressed decorin marker, and exhibited glycosaminoglycan synthesis, which indicate ASC differentiation. Our data suggest that it may be possible to control the differentiation of ASCs using scaffolds appropriate for vocal fold tissue engineering applications. In particular, cogels of HA or collagen with fibrin enhanced proliferation, differentiation, and elastin expression.

Genetic Engineering of Human Stem Cells for Enhanced Angiogenesis Using Biodegradable Polymeric Nanoparticles

Stem cells hold great potential as cell-based therapies to promote vascularization and tissue regeneration. However, the use of stem cells alone to promote angiogenesis remains limited because of insufficient expression of angiogenic factors and low cell viability after transplantation. Here, we have developed vascular endothelial growth factor (VEGF) high-expressing, transiently modified stem cells for the purposes of promoting angiogenesis. Nonviral, biodegradable polymeric nanoparticles were developed to deliver hVEGF gene to human mesenchymal stem cells (hMSCs) and human embryonic stem cell-derived cells (hESdCs). Treated stem cells demonstrated markedly enhanced hVEGF production, cell viability, and engraftment into target tissues. S.c. implantation of scaffolds seeded with VEGF-expressing stem cells (hMSCs and hESdCs) led to 2- to 4-fold-higher vessel densities 2 weeks after implantation, compared with control cells or cells transfected with VEGF by using Lipofectamine 2000, a leading commercial reagent. Four weeks after intramuscular injection into mouse ischemic hindlimbs, genetically modified hMSCs substantially enhanced angiogenesis and limb salvage while reducing muscle degeneration and tissue fibrosis. These results indicate that stem cells engineered with biodegradable polymer nanoparticles may be therapeutic tools for vascularizing tissue constructs and treating ischemic disease.

High Throughput Methods Applied in Biomaterial Development and Discovery

The high throughput discovery of new bio materials can be achieved by rapidly screening many different materials synthesised by a combinatorial approach to identify the optimal composition that fulfils a particular biomedical application. Here we review the literature in this area and conclude that for polymers this process is best achieved in a microarray format, which enable thousands of cell-material interactions to be monitored on a single chip. Polymer microarrays can be formed by printing pre-synthesised polymers or by printing monomers onto the chip where on-slide polymerisation is initiated. The surface properties of the material can be analysed and correlated to the biological performance using high throughput surface analysis, including time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) measurements. This approach enables the surface properties responsible for the success of a material to be understood, which in turn provides the foundations of future material design. The high throughput discovery of materials using polymer microarrays has been explored for many cell-based applications including the isolation of specific cells from heterogeneous populations, the attachment and differentiation of stem cells and the controlled transfection of cells. Further development of polymerisation techniques and high throughput biological assays amenable to the polymer microarray format will broaden the combinatorial space and biological phenomenon that polymer microarrays can explore, and increase their efficacy. This will, in turn, facilitate the discovery of optimised polymeric materials for many biomaterial applications.

Tissue-specific Gene Delivery Via Nanoparticle Coating

The use of biomaterials for gene delivery can potentially avoid many of the safety concerns with viral gene delivery. However, the efficacy of polymeric gene delivery methods is low, particularly in vivo. One significant concern is that the interior and exterior composition of polymeric gene delivery nanoparticles are often coupled, with a single polymer backbone governing all functions from biophysical properties of the polymer/DNA particle to DNA condensation and release. In this work we develop electrostatically adsorbed poly(glutamic acid)-based peptide coatings to alter the exterior composition of a core gene delivery particle and thereby affect tissue-specificity of gene delivery function in vivo. We find that with all coating formulations tested, the coatings reduce potential toxicity associated with uncoated cationic gene delivery nanoparticles following systemic injection. Particles coated with a low 2.5:1 peptide:DNA weight ratio (w/w) form large 2 micro sized particles in the presence of serum that can facilitate specific gene delivery to the liver. The same particles coated at a higher 20:1w/w form small 200nm particles in the presence of serum that can facilitate specific gene delivery to the spleen and bone marrow. Thus, variations in nanoparticle peptide coating density can alter the tissue-specificity of gene delivery in vivo.

Photo-targeted Nanoparticles

We report a novel and simple proof-of-concept of a nanoparticulate system that targets any tissue selectively upon illumination. Nanoparticles were covalently functionalized with the amino acid sequence YIGSR, which adheres to the beta1 integrins present on most cell surfaces. This peptide was masked with a caging group, rendering it biologically inert. Illumination with UV light released the caging group from the YIGSR, allowing binding to cells.

Vascular Differentiation of Human Embryonic Stem Cells in Bioactive Hydrogel-based Scaffolds

The vascularization of tissue constructs remains a major challenge in regenerative medicine, as the diffusional supply of oxygen can support only 100-200 mum thick layers of viable tissue. The formation of a mature and functional vascular network requires communication between endothelial cells (ECs) and smooth muscle cells (SMCs). Potential sources of these cells that involve noninvasive methodologies are required for numerous applications including tissue-engineered vascular grafts, myocardial ischemia, wound healing, plastic surgery, and general tissue-engineering applications. Human embryonic stem cells (hESCs) can be an unlimited source of these cells. They can be expanded in vitro in an undifferentiated state without apparent limit, and hES-derived cells can be created in virtually unlimited amounts for potential clinical uses. Recently, vascular progenitor cells as well as endothelial and smooth muscle cells have been isolated from hESCs.

Injectable in Situ Cross-linking Hydrogels for Local Antifungal Therapy

Invasive fungal infections can be devastating, particularly in immunocompromised patients, and difficult to treat with systemic drugs. Furthermore, systemic administration of those medications can have severe side effects. We have developed an injectable local antifungal treatment for direct administration into existing or potential sites of fungal infection. Amphotericin B (AmB), a hydrophobic, potent, and broad-spectrum antifungal agent, was rendered water-soluble by conjugation to a dextran-aldehyde polymer. The dextran-aldehyde-AmB conjugate retained antifungal efficacy against Candida albicans. Mixing carboxymethylcellulose-hydrazide with dextran-aldehyde formed a gel that cross-linked in situ by formation of hydrazone bonds. The gel provided in vitro release of antifungal activity for 11 days, and contact with the gel killed Candida for three weeks. There was no apparent tissue toxicity in the murine peritoneum and the gel caused no adhesions. Gels produced by entrapment of a suspension of AmB in CMC-dextran without conjugation of drug to polymers did not release fungicidal activity, but did kill on contact. Injectable systems of these types, containing soluble or insoluble drug formulations, could be useful for treatment of local antifungal infections, with or without concurrent systemic therapy.

The Use of Surface Modified Poly(glycerol-co-sebacic Acid) in Retinal Transplantation

Retinal transplantation experiments have advanced considerably during recent years, but remaining diseased photoreceptor cells in the host retina and inner retinal cells in the transplant physically obstruct the development of graft-host neuronal contacts which are required for vision. Recently, we developed methods for the isolation of donor photoreceptor layers in vitro, and the selective removal of host photoreceptors in vivo using biodegradable elastomeric membranes composed of poly(glycerol-co-sebacic acid) (PGS). Here, we report the surface modification of PGS membranes to promote the attachment of photoreceptor layers, allowing the resulting composite to be handled surgically as a single entity. PGS membranes were chemically modified with peptides containing an arginine-glycine-aspartic acid (RGD) extracellular matrix ligand sequence. PGS membranes were also coated with electrospun nanofiber meshes, containing laminin and poly(epsilon-caprolactone) (PCL). Following in vitro co-culture of biomaterial membranes with isolated embryonic retinal tissue, composites were tested for surgical handling and examined with hematoxylin and eosin staining and immunohistochemical markers. Electrospun nanofibers composed of laminin and PCL promoted sufficient cell adhesion for simultaneous transplantation of isolated photoreceptor layers and PGS membranes. Composites developed large populations of recoverin and rhodopsin labeled photoreceptors. Furthermore, ganglion cells, rod bipolar cells and AII amacrine cells were absent in co-cultured retinas as observed by neurofilament, PKC and parvalbumin labeling respectively. These results facilitate retinal transplantation experiments in which a composite graft composed of a biodegradable membrane adhered to an immature retina dominated by photoreceptor cells may be delivered in a single surgery, with the possibility of improving graft-host neuronal connections.

Relationships Among Dietary Nutrients and Subjective Sleep, Objective Sleep, and Napping in Women

To describe which dietary nutrient variables are related to subjective and objective habitual sleep and subjective and objective napping.

Bioinspired Materials for Controlling Stem Cell Fate

Although researchers currently have limited ability to mimic the natural stem cell microenvironment, recent work at the interface of stem biology and biomaterials science has demonstrated that control over stem cell behavior with artificial microenvironments is quite advanced. Embryonic and adult stem cells are potentially useful platforms for tissue regeneration, cell-based therapeutics, and disease-in-a-dish models for drug screening. The major challenge in this field is to reliably control stem cell behavior outside the body. Common biological control schemes often ignore physicochemical parameters that materials scientists and engineers commonly manipulate, such as substrate topography and mechanical and rheological properties. However, with appropriate attention to these parameters, researchers have designed novel synthetic microenvironments to control stem cell behavior in rather unnatural ways. In this Account, we review synthetic microenvironments that aim to overcome the limitations of natural niches rather than to mimic them. A biomimetic stem cell control strategy is often limited by an incomplete understanding of the complex signaling pathways that drive stem cell behavior from early embryogenesis to late adulthood. The stem cell extracellular environment presents a miscellany of competing biological signals that keep the cell in a state of unstable equilibrium. Using synthetic polymers, researchers have designed synthetic microenvironments with an uncluttered array of cell signals, both specific and nonspecific, that are motivated by rather than modeled after biology. These have proven useful in maintaining cell potency, studying asymmetric cell division, and controlling cellular differentiation. We discuss recent research that highlights important biomaterials properties for controlling stem cell behavior, as well as advanced processes for selecting those materials, such as combinatorial and high-throughput screening. Much of this work has utilized micro- and nanoscale fabrication tools for controlling material properties and generating diversity in both two and three dimensions. Because of their ease of synthesis and similarity to biological soft matter, hydrogels have become a biomaterial of choice for generating 3D microenvironments. In presenting these efforts within the framework of synthetic biology, we anticipate that future researchers may exploit synthetic polymers to create microenvironments that control stem cell behavior in clinically relevant ways.

Lipid-like Materials for Low-dose, in Vivo Gene Silencing

Significant effort has been applied to discover and develop vehicles which can guide small interfering RNAs (siRNA) through the many barriers guarding the interior of target cells. While studies have demonstrated the potential of gene silencing in vivo, improvements in delivery efficacy are required to fulfill the broadest potential of RNA interference therapeutics. Through the combinatorial synthesis and screening of a different class of materials, a formulation has been identified that enables siRNA-directed liver gene silencing in mice at doses below 0.01 mg/kg. This formulation was also shown to specifically inhibit expression of five hepatic genes simultaneously, after a single injection. The potential of this formulation was further validated in nonhuman primates, where high levels of knockdown of the clinically relevant gene transthyretin was observed at doses as low as 0.03 mg/kg. To our knowledge, this formulation facilitates gene silencing at orders-of-magnitude lower doses than required by any previously described siRNA liver delivery system.

Nanoparticulate Cellular Patches for Cell-mediated Tumoritropic Delivery

The targeted delivery of therapeutics to tumors remains an important challenge in cancer nanomedicine. Attaching nanoparticles to cells that have tumoritropic migratory properties is a promising modality to address this challenge. Here we describe a technique to create nanoparticulate cellular patches that remain attached to the membrane of cells for up to 2 days. NeutrAvidin-coated nanoparticles were anchored on cells possessing biotinylated plasma membrane. Human bone marrow derived mesenchymal stem cells with nanoparticulate patches retained their inherent tumoritropic properties as shown using a tumor model in a 3D extracellular matrix. Additionally, human umbilical vein endothelial cells with nanoparticulate patches were able to retain their functional properties and form multicellular structures as rapidly as unmodified endothelial cells. These results provide a novel strategy to actively deliver nanostructures and therapeutics to tumors utilizing stem cells as carriers and also suggest that nanoparticulate cellular patches may have applications in tissue regeneration.

Spatiotemporal Controlled Delivery of Nanoparticles to Injured Vasculature

There are a number of challenges associated with designing nanoparticles for medical applications. We define two challenges here: (i) conventional targeting against up-regulated cell surface antigens is limited by heterogeneity in expression, and (ii) previous studies suggest that the optimal size of nanoparticles designed for systemic delivery is approximately 50-150 nm, yet this size range confers a high surface area-to-volume ratio, which results in fast diffusive drug release. Here, we achieve spatial control by biopanning a phage library to discover materials that target abundant vascular antigens exposed in disease. Next, we achieve temporal control by designing 60-nm hybrid nanoparticles with a lipid shell interface surrounding a polymer core, which is loaded with slow-eluting conjugates of paclitaxel for controlled ester hydrolysis and drug release over approximately 12 days. The nanoparticles inhibited human aortic smooth muscle cell proliferation in vitro and showed greater in vivo vascular retention during percutaneous angioplasty over nontargeted controls. This nanoparticle technology may potentially be used toward the treatment of injured vasculature, a clinical problem of primary importance.

Self-assembled Gold Nanoparticle Molecular Probes for Detecting Proteolytic Activity in Vivo

Target-activatable fluorogenic probes based on gold nanoparticles (AuNPs) functionalized with self-assembled heterogeneous monolayers of dye-labeled peptides and poly(ethylene glycol) have been developed to visualize proteolytic activity in vivo. A one-step synthesis strategy that allows simple generation of surface-defined AuNP probe libraries is presented as a means of tailoring and evaluating probe characteristics for maximal fluorescence enhancement after protease activation. Optimal AuNP probes targeted to trypsin and urokinase-type plasminogen activator required the incorporation of a dark quencher to achieve 5- to 8-fold signal amplification. These probes exhibited extended circulation time in vivo and high image contrast in a mouse tumor model.

Emerging Nanotechnology Approaches for HIV/AIDS Treatment and Prevention

Currently, there is no cure and no preventive vaccine for HIV/AIDS. Combination antiretroviral therapy has dramatically improved treatment, but it has to be taken for a lifetime, has major side effects and is ineffective in patients in whom the virus develops resistance. Nanotechnology is an emerging multidisciplinary field that is revolutionizing medicine in the 21st century. It has a vast potential to radically advance the treatment and prevention of HIV/AIDS. In this review, we discuss the challenges with the current treatment of the disease and shed light on the remarkable potential of nanotechnology to provide more effective treatment and prevention for HIV/AIDS by advancing antiretroviral therapy, gene therapy, immunotherapy, vaccinology and microbicides.

Impaired Metabolism in Donor Kidney Grafts After Steroid Pretreatment

Summary We recently showed in a randomized control trial that steroid pretreatment of the deceased organ donor suppressed inflammation in the transplant organ but did not reduce the rate or duration of delayed graft function (DGF). This study sought to elucidate such of those factors that caused DGF in the steroid-treated subjects. Genome-wide gene expression profiles were used from 20 steroid-pretreated donor-organs and were analyzed on the level of regulatory protein-protein interaction networks. Significance analysis of microarrays (SAM) yielded 63 significantly down-regulated sequences associated with DGF that could be functionally categorized according to Protein ANalysis THrough Evolutionary Relationships ontologies into two main biologic processes: transport (P < 0.001) and metabolism (P < 0.001). The identified genes suggest hypoxia as the cause of DGF, which cannot be counterbalanced by steroid treatment. Our data showed that molecular pathways affected by ischemia such as transport and metabolism are associated with DGF. Potential interventional targeted therapy based on these findings includes peroxisome proliferator-activated receptor agonists or caspase inhibitors.

Injectable Hyaluronic Acid-dextran Hydrogels and Effects of Implantation in Ferret Vocal Fold

Injectable hydrogels may potentially be used for augmentation/regeneration of the lamina propria of vocal fold tissue. In this study, hyaluronic acid (HA) and dextran were chemically modified and subsequently crosslinked via formation of hydrazone bonds in phosphate buffer. Swelling ratios, degradation, and compressive moduli of the resulting hydrogels were investigated. It was found that the properties of HA-dextran hydrogels were variable and the trend of variation could be correlated with the hydrogel composition. The biocompatibility of three injectable HA-dextran hydrogels with different crosslinking density was assessed in the vocal fold region using a ferret model. It was found that HA-dextran hydrogels implanted for three weeks stimulated mild foreign-body reactions. Distinct tissue-material interactions were also observed for hydrogels made from different formulations: the hydrogel with the lowest crosslinking density was completely degraded in vivo; while material residues were visible for other types of hydrogel injections, with or without cell penetration into the implantation depending on the hydrogel composition. The in vivo results suggest that the HA-dextran hydrogel matrices can be further developed for applications of vocal fold tissue restoration.

Single-step Assembly of Homogenous Lipid-polymeric and Lipid-quantum Dot Nanoparticles Enabled by Microfluidic Rapid Mixing

A key challenge in the synthesis of multicomponent nanoparticles (NPs) for therapy or diagnosis is obtaining reproducible monodisperse NPs with a minimum number of preparation steps. Here we report the use of microfluidic rapid mixing using hydrodynamic flow focusing in combination with passive mixing structures to realize the self-assembly of monodisperse lipid-polymer and lipid-quantum dot (QD) NPs in a single mixing step. These NPs are composed of a polymeric core for drug encapsulation or a QD core for imaging purposes, a hydrophilic polymeric shell, and a lipid monolayer at the interface of the core and the shell. In contrast to slow mixing of lipid and polymeric solutions, rapid mixing directly results in formation of homogeneous NPs with relatively narrow size distribution that obviates the need for subsequent thermal or mechanical agitation for homogenization. We identify rapid mixing conditions that result in formation of homogeneous NPs and show that self-assembly of polymeric core occurs independent of the lipid component, which only provides stability against aggregation over time and in the presence of high salt concentrations. Physicochemical properties of the NPs including size (35-180 nm) and zeta potential (-10 to +20 mV in PBS) are controlled by simply varying the composition and concentration of precursors. This method for preparation of hybrid NPs in a single mixing step may be useful for combinatorial synthesis of NPs with different properties for imaging and drug delivery applications.

Directed Evolution of a Magnetic Resonance Imaging Contrast Agent for Noninvasive Imaging of Dopamine

The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h's paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3-8.9 microM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity-dependent sensors, and our protein engineering approach can be generalized to create probes for other targets.

Nanoparticle Technologies for Cancer Therapy

Nanoparticles as drug delivery systems enable unique approaches for cancer treatment. Over the last two decades, a large number of nanoparticle delivery systems have been developed for cancer therapy, including organic and inorganic materials. Many liposomal, polymer-drug conjugates, and micellar formulations are part of the state of the art in the clinics, and an even greater number of nanoparticle platforms are currently in the preclinical stages of development. More recently developed nanoparticles are demonstrating the potential sophistication of these delivery systems by incorporating multifunctional capabilities and targeting strategies in an effort to increase the efficacy of these systems against the most difficult cancer challenges, including drug resistance and metastatic disease. In this chapter, we will review the available preclinical and clinical nanoparticle technology platforms and their impact for cancer therapy.

Polymeric Nanoparticles for Drug Delivery

The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Concurrently, targeted delivery technologies are becoming increasingly important as a scientific area of investigation. In cancer, targeted polymeric NPs can be used to deliver chemotherapies to tumor cells with greater efficacy and reduced cytotoxicity on peripheral healthy tissues. In this chapter, we describe the methods of (1) preparation and characterization of drug-encapsulated polymeric NPs formulated with biocompatible and biodegradable poly(D,L-lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-b-PEG) copolymers; (2) surface functionalization of the polymeric NPs with the A10 2'-fluoropyrimidine ribonucleic acid (RNA) aptamers that recognize the prostate-specific membrane antigen (PSMA) on prostate cancer cells; and (3) evaluation of the binding properties of these targeted polymeric NPs to PSMA-expressing prostate cancer cells in vitro and in vivo. These methods may contribute to the development of other useful polymeric NPs to deliver a spectrum of chemotherapeutic, diagnostic, and imaging agents for various applications.

Establishing a Model Spinal Cord Injury in the African Green Monkey for the Preclinical Evaluation of Biodegradable Polymer Scaffolds Seeded with Human Neural Stem Cells

Given the involvement of post-mitotic neurons, long axonal tracts and incompletely elucidated injury and repair pathways, spinal cord injury (SCI) presents a particular challenge for the creation of preclinical models to robustly evaluate longitudinal changes in neuromotor function in the setting in the presence and absence of intervention. While rodent models exhibit high degrees of spontaneous recovery from SCI injury, animal care concerns preclude complete cord transections in non-human primates and other larger vertebrate models. To overcome such limitations a segmental thoracic (T9-T10) spinal cord hemisection was created and characterized in the African green monkey. Physiological tolerance of the model permitted behavioral analyses for a prolonged period post-injury, extending to predefined study termination points at which histological and immunohistochemical analyses were performed. Four monkeys were evaluated (one receiving no implant at the lesion site, one receiving a poly(lactide-co-glycolide) (PLGA) scaffold, and two receiving PLGA scaffolds seeded with human neural stem cells (hNSC)). All subjects exhibited Brown-Séquard syndrome 2 days post-injury consisting of ipsilateral hindlimb paralysis and contralateral hindlimb hypesthesia with preservation of bowel and bladder function. A 20-point observational behavioral scoring system allowed quantitative characterization of the levels of functional recovery. Histological endpoints including silver degenerative staining and Iba1 immunohistochemistry, for microglial and macrophage activation, were determined to reliably define lesion extent and correlate with neurobehavioral data, and justify invasive telemetered electromyographic and kinematic studies to more definitively address efficacy and mechanism.

Effects of Ultrasound and Sodium Lauryl Sulfate on the Transdermal Delivery of Hydrophilic Permeants: Comparative in Vitro Studies with Full-thickness and Split-thickness Pig and Human Skin

The simultaneous application of ultrasound and the surfactant sodium lauryl sulfate (referred to as US/SLS) to skin enhances transdermal drug delivery (TDD) in a synergistic mechanical and chemical manner. Since full-thickness skin (FTS) and split-thickness skin (STS) differ in mechanical strength, US/SLS treatment may have different effects on their transdermal transport pathways. Therefore, we evaluated STS as an alternative to the well-established US/SLS-treated FTS model for TDD studies of hydrophilic permeants. We utilized the aqueous porous pathway model to compare the effects of US/SLS treatment on the skin permeability and the pore radius of pig and human FTS and STS over a range of skin electrical resistivity values. Our findings indicate that the US/SLS-treated pig skin models exhibit similar permeabilities and pore radii, but the human skin models do not. Furthermore, the US/SLS-enhanced delivery of gold nanoparticles and quantum dots (two model hydrophilic macromolecules) is greater through pig STS than through pig FTS, due to the presence of less dermis that acts as an artificial barrier to macromolecules. In spite of greater variability in correlations between STS permeability and resistivity, our findings strongly suggest the use of 700microm-thick pig STS to investigate the in vitro US/SLS-enhanced delivery of hydrophilic macromolecules.

A Microcomposite Hydrogel for Repeated On-demand Ultrasound-triggered Drug Delivery

Here we develop an injectable composite system based for repeated ultrasound-triggered on-demand drug delivery. An in situ-cross-linking hydrogel maintains model drug (dye)-containing liposomes in close proximity to gas-filled microbubbles that serve to enhance release events induced by ultrasound application. Dye release is tunable by varying the proportions of the liposomal and microbubble components, as well as the duration and intensity of the ultrasound pulses in vitro. Dye is minimal at baseline. The composite shows minimal cytotoxicity in vitro, and benign tissue reaction after subcutaneous injection in rats. Ultrasound application also triggers drug release for two weeks after injection in vivo.

Optimizing the Delivery of Cancer Drugs That Block Angiogenesis

Drugs that block angiogenesis are important components of first-line therapies for a number of human cancers. However, some of these agents have undesirable effects on the patient. Optimal delivery systems must be developed to maximize clinical benefits and minimize adverse effects in cancer patients. In this Perspective, we discuss these drug-related issues and propose ways to optimize antiangiogenic therapy by the development of new drug delivery systems.

Rapid Biocompatibility Analysis of Materials Via in Vivo Fluorescence Imaging of Mouse Models

Many materials are unsuitable for medical use because of poor biocompatibility. Recently, advances in the high throughput synthesis of biomaterials has significantly increased the number of potential biomaterials, however current biocompatibility analysis methods are slow and require histological analysis.

Progress in SiRNA Delivery Using Multifunctional Nanoparticles

Nanoparticles made from synthetic polymers have been developed to deliver small interfering RNA (siRNA). For successful siRNA delivery, these nanoparticles need to efficiently encapsulate siRNA, actively target sites of interest, and release siRNA intracellularly. This chapter reviews recent progress using a multifunctional approach to design and engineer polymeric nanoparticles for siRNA delivery.

ChemoRad Nanoparticles: a Novel Multifunctional Nanoparticle Platform for Targeted Delivery of Concurrent Chemoradiation

The development of chemoradiation - the concurrent administration of chemotherapy and radiotherapy - has led to significant improvements in local tumor control and survival. However, it is limited by its high toxicity. In this study, we report the development of a novel NP (nanoparticle) therapeutic, ChemoRad NP, which can deliver biologically targeted chemoradiation.

Estrogen Alone in Postmenopausal Women and Breast Cancer Detection by Means of Mammography and Breast Biopsy

As the influence of estrogen alone on breast cancer detection is not established, we examined this issue in the Women's Health Initiative trial, which randomly assigned 10,739 postmenopausal women with prior hysterectomy to conjugated equine estrogen (CEE; 0.625 mg/d) or placebo.

Transplantation Behind the Iron Curtain--a Short Historical Note on the 20th Anniversary

This article is dedicated to the memory of the pioneers of solid organ transplantation 20 yr after the Iron Curtain was demolished and Eastern European countries joined the free world. Despite the special political and medical conditions that existed, the evolution of transplantation could proceed following Western trends. With the formation of Intertransplant, kidney transplantation was formalized, and a limited organ exchange could be realized. The transplantation of non-renal organs was rather sporadic until 1989. This paper summarizes the efforts in transplantation in Eastern Europe during this period of tension with the West.

Isolation, Differentiation and Characterization of Vascular Cells Derived from Human Embryonic Stem Cells

Herein, we describe a protocol for the isolation of human embryonic stem cells (hESCs)-derived vascular cells at various stages of development. The cells are isolated from 10 to 15-d-old human embryoid bodies (EBs) cultured in suspension. After dissociation, cells are labeled with anti-CD34 or anti-CD31 (PECAM1) antibody and separated from the cell mixture by magnetic-activated cell separation (MACS) or fluorescent-activated cell sorting (FACS). Isolated vascular cells are then cultured in media conditions that support specific differentiation and expansion pathways. The resulting vascular cell populations contain >80% endothelial-like or smooth muscle-like cells. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 1.5 months. Vascular cells isolated and differentiated under the described conditions may constitute a potential cell source for therapeutic application toward repair of ischemic tissues, preparation of tissue-engineered vascular grafts and design of cellular kits for drug screening applications.

Biodegradable Xylitol-based Elastomers: in Vivo Behavior and Biocompatibility

Biodegradable elastomers based on polycondensation reactions of xylitol with sebacic acid, referred to as poly(xylitol sebacate) (PXS) elastomers have recently been developed. We describe the in vivo behavior of PXS elastomers. Four PXS elastomers were synthesized, characterized, and compared with poly(L-lactic-co-glycolic acid) (PLGA). PXS elastomers displayed a high level of structural integrity and form stability during degradation. The in vivo half-life ranged from approximately 3 to 52 weeks. PXS elastomers exhibited increased biocompatibility compared with PLGA implants.

Calcium/vitamin D Supplementation and Coronary Artery Calcification in the Women's Health Initiative

Coronary artery calcified plaque is a marker for atheromatous plaque burden and predicts future risk of cardiovascular events. The relationship between calcium plus vitamin D (calcium/D) supplementation and coronary artery calcium (CAC) has not been previously assessed in a randomized trial setting. We compared CAC scores after trial completion between women randomized to calcium/vitamin D supplementation and women randomized to placebo.

Combinatorial Extracellular Matrices for Human Embryonic Stem Cell Differentiation in 3D

Embryonic stem cells (ESCs) are promising cell sources for tissue engineering and regenerative medicine. Scaffolds for ESC-based tissue regeneration should provide not only structural support, but also signals capable of supporting appropriate cell differentiation and tissue development. Extracellular matrix (ECM) is a key component of the stem cell niche in vivo and can influence stem cell fate via mediating cell attachment and migration, presenting chemical and physical cues, as well as binding soluble factors. Here we investigated the effects of combinatorial extracellular matrix proteins on controlled human ESC (hESC) differentiation. Varying ECM compositions in 3D markedly affects cell behavior, and optimal compositions of ECM hydrogels are identified that facilitate specific-lineage differentiation of stem cells. To our knowledge, this is the first combinatorial analysis of ECM hydrogels for their effects on hESC differentiation in 3D. The 3D matrices described herein may provide a useful platform for studying the interactive ECM signaling in influencing stem cell differentiation.

Does Borderline Kidney Allograft Rejection Always Require Treatment?

Borderline rejection (Bord-R) is a frequent diagnosis in renal transplantation, and there is increasing evidence that regulatory T lymphocytes are involved in its pathogenesis. Current histopathologic practice does not differentiate between graft-protecting and -damaging T lymphocytes, and patients with Bord-R routinely receive rejection treatment. We analyzed Treg-associated forkhead box P3 (Foxp3) gene expression in Bord-R and more severe forms of acute rejection episodes (ARE).

Vasomotor Symptoms and Coronary Artery Calcium in Postmenopausal Women

We assessed whether vasomotor symptoms (VMS) are associated with coronary artery calcium (CAC) and how hormone therapy (HT) may influence this association.

Retinal Transplantation Using Surface Modified Poly(glycerol-co-sebacic Acid) Membranes

In retinal transplantation experiments it is hypothesized that remaining diseased photoreceptor cells in the host retina and inner retinal cells in transplants physically obstruct the development of graft-host neuronal contacts which are required for vision. Recently, we developed methods for the isolation of donor photoreceptor layers in vitro, and the selective removal of host photoreceptors in vivo using biodegradable elastomeric membranes composed of poly(glycerol-co-sebacic acid) (PGS). We also coated PGS membranes with electrospun nanofibers, composed of laminin and poly(epsilon-caprolactone) (PCL), to promote attachment of embryonic retinal explants, allowing the resulting composites to be handled surgically as a single entity. Here, we report subretinal transplantation of these composites into adult porcine eyes. In hematoxylin and eosin stained sections of composite explants after 5-7 days in vitro, excellent fusion of retinas and biomaterial membranes was noted, with the immature retinal components showing laminated as well as folded and rosetted areas. The composite grafts could be transplanted in all cases and, 3 months after surgery, eyes displayed clear media, attached retinas and the grafts located subretinally. Histological examination revealed that the biomaterial membrane had degraded without any signs of inflammation. Transplanted retinas displayed areas of rosettes as well as normal lamination. In most cases inner retinal layers were present in the grafts. Laminated areas displayed well-developed photoreceptors adjacent to an intact host retinal pigment epithelium and degeneration of the host outer nuclear layer (ONL) was often observed together with occasional fusion of graft and host inner layers.

Stimuli-responsive Microwells for Formation and Retrieval of Cell Aggregates

Generating cell aggregates is beneficial for various applications ranging from biotechnology to regenerative therapies. Previously, poly(ethylene glycol) (PEG) microwells have been demonstrated as a potentially useful method for generating controlled-size cell aggregates. In addition to controlling cell aggregate size and homogeneity, the ability to confine cell aggregates on glass adhesive substrates and subsequently retrieve aggregates from microwells for further experimentation and analysis could be beneficial for various applications. However, it is often difficult to retrieve cell aggregates from these microwells without the use of digestive enzymes. This study describes the stable formation of cell aggregates in responsive microwells with adhesive substrates and their further retrieval in a temperature dependent manner by exploiting the stimuli responsiveness of these microwells. The responsive polymer structure of the arrays can be used to thermally regulate the microwell diameters causing a mechanical force on the aggregates, subsequently facilitating the retrieval of cell aggregates from the microwells with high efficiency compared to PEG arrays. This approach can be potentially integrated into high-throughput systems and may become a versatile tool for various applications that require aggregate formation and experimentation, such as tissue engineering, drug discovery, and stem cell biology.

Chondrogenesis and Mineralization During in Vitro Culture of Human Mesenchymal Stem Cells on Three-dimensional Woven Scaffolds

Human mesenchymal stem cells (hMSCs) and three-dimensional (3D) woven poly(ɛ-caprolactone) (PCL) scaffolds are promising tools for skeletal tissue engineering. We hypothesized that in vitro culture duration and medium additives can individually and interactively influence the structure, composition, mechanical, and molecular properties of engineered tissues based on hMSCs and 3D poly(ɛ-caprolactone). Bone marrow hMSCs were suspended in collagen gel, seeded on scaffolds, and cultured for 1, 21, or 45 days under chondrogenic and/or osteogenic conditions. Structure, composition, biomechanics, and gene expression were analyzed. In chondrogenic medium, cartilaginous tissue formed by day 21, and hypertrophic mineralization was observed in the newly formed extracellular matrix at the interface with underlying scaffold by day 45. Glycosaminoglycan, hydroxyproline, and calcium contents, and alkaline phosphatase activity depended on culture duration and medium additives, with significant interactive effects (all p < 0.0001). The 45-day constructs exhibited mechanical properties on the order of magnitude of native articular cartilage (aggregate, Young's, and shear moduli of 0.15, 0.12, and 0.033 MPa, respectively). Gene expression was characteristic of chondrogenesis and endochondral bone formation, with sequential regulation of Sox-9, collagen type II, aggrecan, core binding factor alpha 1 (Cbfα1)/Runx2, bone sialoprotein, bone morphogenetic protein-2, and osteocalcin. In contrast, osteogenic medium produced limited osteogenesis. Long-term culture of hMSC on 3D scaffolds resulted in chondrogenesis and regional mineralization at the interface between soft, newly formed engineered cartilage, and stiffer underlying scaffold. These findings merit consideration when developing grafts for osteochondral defect repair.

Poly(ethylene Glycol) with Observable Shedding

Transplantation in Hungary--preface on the Occasion of Transplantation Proceedings Becoming the Official Journal of the Hungarian Transplantation Society

The first, long-term successful kidney transplantation happened 37 years ago in Hungary. At the same time an organized renal program was initiated followed by transplantations of other solid organs. The authors remember previous milestone operations and the preceding events. In 1982, Hungary was the first country in the Eastern block to introduce cyclosporine. After the Iron Curtain fell new circumstances and possibilities opened for the transplant community also. Young transplant surgeons were sent to Western countries returning with new experiences. In 1992 the heart transplantation program started in Budapest. The Universities of Debrecen and Pécs joined Budapest and Szeged with renal transplant programs. In 1994, a new Department was initiated at Semmelweis University with an immediate increase of 50%. The next year a liver transplantation program was launched. Pancreas transplants were performed in 1998 in Pécs, followed by Budapest. In 2003, a collaboration was initiated between Geneva and Budapest for islet transplantation and another with Vienna for lung transplantation. This article provides an overview of Hungarian transplant activities.

Steroid Pretreatment of Organ Donors to Prevent Postischemic Renal Allograft Failure: a Randomized, Controlled Trial

Posttransplantation acute renal failure (ARF) occurs in roughly 25% of recipients of organs from deceased donors. Inflammation in the donor organ is associated with risk for ARF.

Combinatorial Approach to Determine Functional Group Effects on Lipidoid-mediated SiRNA Delivery

The application of RNA interference (RNAi), either in the clinic or in the laboratory, requires safe and effective delivery methods. Here, we develop a combinatorial approach to synthesize a library of delivery vectors based on two lipid-like substrates with known siRNA delivery capabilities. Members of this library have a mixture of lipid-like tails and feature appendages containing hydroxyl, carbamate, ether, or amine functional groups as well as variations in alkyl chain length and branching. Using a luciferase reporter system in HeLa cells, we studied the relationship between lipid chemical modification and delivery performance in vitro. The impact of the functional group was shown to vary depending on the overall amine content and tail number of the delivery vector. Additionally, in vivo performance was evaluated using a Factor VII knockdown assay. Two library members, each containing ether groups, were found to knock down the target protein at levels comparable to those of the parent delivery vector. These results demonstrate that small chemical changes to the delivery vector impact knockdown efficiency and cell viability both in vitro and in vivo. The work described here identifies new materials for siRNA delivery and provides new insight into the parameters for optimized chemical makeup of lipid-like siRNA delivery materials.

Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds

Polymer scaffolds that direct elongation and orientation of cultured cells can enable tissue engineered muscle to act as a mechanically functional unit. We combined micromolding and microablation technologies to create muscle tissue engineering scaffolds from the biodegradable elastomer poly(glycerol sebacate). These scaffolds exhibited well defined surface patterns and pores and robust elastomeric tensile mechanical properties. Cultured C2C12 muscle cells penetrated the pores to form spatially controlled engineered tissues. Scanning electron and confocal microscopy revealed muscle cell orientation in a preferential direction, parallel to micromolded gratings and long axes of microablated anisotropic pores, with significant individual and interactive effects of gratings and pore design.

Nanotechnology in Drug Delivery and Tissue Engineering: from Discovery to Applications

The application of nanotechnology in medicine, referred to as nanomedicine, is offering numerous exciting possibilities in healthcare. Herein, we discuss two important aspects of nanomedicine, drug delivery and tissue engineering, highlighting the advances we have recently experienced, the challenges we are currently facing, and what we are likely to witness in the near future.

Combinatorial Development of Biomaterials for Clonal Growth of Human Pluripotent Stem Cells

Both human embryonic stem cells and induced pluripotent stem cells can self-renew indefinitely in culture; however, present methods to clonally grow them are inefficient and poorly defined for genetic manipulation and therapeutic purposes. Here we develop the first chemically defined, xeno-free, feeder-free synthetic substrates to support robust self-renewal of fully dissociated human embryonic stem and induced pluripotent stem cells. Material properties including wettability, surface topography, surface chemistry and indentation elastic modulus of all polymeric substrates were quantified using high-throughput methods to develop structure-function relationships between material properties and biological performance. These analyses show that optimal human embryonic stem cell substrates are generated from monomers with high acrylate content, have a moderate wettability and employ integrin alpha(v)beta(3) and alpha(v)beta(5) engagement with adsorbed vitronectin to promote colony formation. The structure-function methodology employed herein provides a general framework for the combinatorial development of synthetic substrates for stem cell culture.

CanScript, an 18-Base Pair DNA Sequence, Boosts Tumor Cell-specific Promoter Activity: Implications for Targeted Gene Therapy

Gene therapy protocols for the treatment of cancer often employ gene promoter sequences that are known to be over-expressed in specific tumor cell types relative to normal cells. These promoters, while specific, are often weakly active. It would be desirable to increase the activity of such promoters, while at the same time retain specificity, so that the therapeutic gene is more robustly expressed. Using a luciferase reporter DNA construct in both in vitro cell transfection assays and in vivo mouse tumor models, we have determined that in the absence of any other DNA sequence, a previously identified 18-base pair enhancer sequence called CanScript, lying upstream of the MSLN gene, has ~25% of the promoter activity of CAG, a very strong non-specific promoter/enhancer, in tumor cells in which MSLN is highly expressed. Furthermore, tandem repeat copies of CanScript enhance transcription in a dose-dependent manner and, when coupled with promoter sequences that are active in tumor cells, increase promoter activity. These findings suggest that the incorporation of CanScript into gene constructs may have application in enhancing activity of promoters used in cancer-targeting gene therapy strategies, thereby improving therapeutic efficacy.

A High Throughput Micro-array System of Polymer Surfaces for the Manipulation of Primary Pancreatic Islet Cells

We developed a high throughput micro-arrayed polymer system for the study of polymer surfaces for islet cell culture. A micro-arrayed library with 496 different polymers was synthesized and used to examine attachment and insulin expression of islet cells. While most polymers were not supportive, several related polymers were identified as suitable ("hit's"). The "hit" arrays composed of "hit" polymers with 36 replicates were fabricated to confirm their capacities to support the attachment of islet cells, and these capacities were further validated in large surfaces. Notably, the attachment of islet cells on these synthetic polymeric films has been found to be as supportive as 804G supernatant coated tissue culture polystyrene dishes, one of the most extensively used substrates for the islet cell attachment. Interestingly, the polymeric surfaces optimal for a different cell type, hES derived cells, were distinct, highlighting the utility of these approaches for identifying cell type specific surfaces.

Polymer Surface Functionalities That Control Human Embryoid Body Cell Adhesion Revealed by High Throughput Surface Characterization of Combinatorial Material Microarrays

High throughput materials discovery using combinatorial polymer microarrays to screen for new biomaterials with new and improved function is established as a powerful strategy. Here we combine this screening approach with high throughput surface characterization (HT-SC) to identify surface structure-function relationships. We explore how this combination can help to identify surface chemical moieties that control protein adsorption and subsequent cellular response. The adhesion of human embryoid body (hEB) cells to a large number (496) of different acrylate polymers synthesized in a microarray format is screened using a high throughput procedure. To determine the role of the polymer surface properties on hEB cell adhesion, detailed HT-SC of these acrylate polymers is carried out using time of flight secondary ion mass spectrometry (ToF SIMS), X-ray photoelectron spectroscopy (XPS), pico litre drop sessile water contact angle (WCA) measurement and atomic force microscopy (AFM). A structure-function relationship is identified between the ToF SIMS analysis of the surface chemistry after a fibronectin (Fn) pre-conditioning step and the cell adhesion to each spot using the multivariate analysis technique partial least squares (PLS) regression. Secondary ions indicative of the adsorbed Fn correlate with increased cell adhesion whereas glycol and other functionalities from the polymers are identified that reduce cell adhesion. Furthermore, a strong relationship between the ToF SIMS spectra of bare polymers and the cell adhesion to each spot is identified using PLS regression. This identifies a role for both the surface chemistry of the bare polymer and the pre-adsorbed Fn, as-represented in the ToF SIMS spectra, in controlling cellular adhesion. In contrast, no relationship is found between cell adhesion and wettability, surface roughness, elemental or functional surface composition. The correlation between ToF SIMS data of the surfaces and the cell adhesion demonstrates the ability to identify surface moieties that control protein adsorption and subsequent cell adhesion using ToF SIMS and multivariate analysis.

Engineering of Self-assembled Nanoparticle Platform for Precisely Controlled Combination Drug Therapy

The genomic revolution has identified therapeutic targets for a plethora of diseases, creating a need to develop robust technologies for combination drug therapy. In the present work, we describe a self-assembled polymeric nanoparticle (NP) platform to target and control precisely the codelivery of drugs with varying physicochemical properties to cancer cells. As proof of concept, we codelivered cisplatin and docetaxel (Dtxl) to prostate cancer cells with synergistic cytotoxicity. A polylactide (PLA) derivative with pendant hydroxyl groups was prepared and conjugated to a platinum(IV) [Pt(IV)] prodrug, c,t,c-[Pt(NH(3))(2)(O(2)CCH(2)CH(2)COOH)(OH)Cl(2)] [PLA-Pt(IV)]. A blend of PLA-Pt(IV) functionalized polymer and carboxyl-terminated poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) copolymer in the presence or absence of Dtxl, was converted, in microfluidic channels, to NPs with a diameter of ∼100 nm. This process resulted in excellent encapsulation efficiency (EE) and high loading of both hydrophilic platinum prodrug and hydrophobic Dtxl with reproducible EEs and loadings. The surface of the NPs was derivatized with the A10 aptamer, which binds to the prostate-specific membrane antigen (PSMA) on prostate cancer cells. These NPs undergo controlled release of both drugs over a period of 48-72 h. Targeted NPs were internalized by the PSMA-expressing LNCaP cells via endocytosis, and formation of cisplatin 1,2-d(GpG) intrastrand cross-links on nuclear DNA was verified. In vitro toxicities demonstrated superiority of the targeted dual-drug combination NPs over NPs with single drug or nontargeted NPs. This work reveals the potential of a single, programmable nanoparticle to blend and deliver a combination of drugs for cancer treatment.

High Throughput Surface Characterization: A Review of a New Tool for Screening Prospective Biomedical Material Arrays

The application of high throughput surface characterization (HTSC) to the analysis of polymeric biomaterial libraries is an important advancement for the discovery and development of new biomedical materials and is the focus of this review. The potential for HTSC to identify structure/activity relationships for large libraries of materials can be utilized to accelerate materials discovery as well as providing insight into the underlying biological-material interactions. Furthermore, the correlations identified between surface chemical structure and cellular behavior could not have been predicted by a rational design approach based simply on review of bulk structure, which demonstrates the importance of HTSC in the assessment of cell-material and cell-biomolecular interactions that are dependent on surface properties.

Mesenchymal Stem Cell Mechanics from the Attached to the Suspended State

Human mesenchymal stem cells (hMSCs) are therapeutically useful cells that are typically expanded in vitro on stiff substrata before reimplantation. Here we explore MSC mechanical and structural changes via atomic force microscopy and optical stretching during extended passaging, and we demonstrate that cytoskeletal organization and mechanical stiffness of attached MSC populations are strongly modulated over >15 population doublings in vitro. Cytoskeletal actin networks exhibit significant coarsening, attendant with decreasing average mechanical compliance and differentiation potential of these cells, although expression of molecular surface markers does not significantly decline. These mechanical changes are not observed in the suspended state, indicating that the changes manifest themselves as alterations in stress fiber arrangement rather than cortical cytoskeleton arrangement. Additionally, optical stretching is capable of investigating a previously unquantified structural transition: remodeling-induced stiffening over tens of minutes after adherent cells are suspended. Finally, we find that optically stretched hMSCs exhibit power-law rheology during both loading and recovery; this evidence appears to be the first to originate from a biophysical measurement technique not involving cell-probe or cell-substratum contact. Together, these quantitative assessments of attached and suspended MSCs define the extremes of the extracellular environment while probing intracellular mechanisms that contribute to cell mechanical response.

Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-induced Skin Structural Perturbation

This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness skin (STS) treated with LFS/SLS and LFS were analyzed in the context of the aqueous porous pathway model to quantify skin perturbation through changes in skin pore radius and porosity-to-tortuosity ratio (ε/τ). In addition, skin treatment times required to attain specific levels of skin electrical resistivity were analyzed to draw conclusions about the effect of SLS on reproducibility and predictability of skin perturbation. We found that LFS/SLS-treated FTS, LFS/SLS-treated STS, and LFS-treated FTS exhibited similar skin perturbation. However, LFS-treated STS exhibited significantly higher skin perturbation, suggesting greater structural changes to the less robust STS induced by the purely physical enhancement mechanism of LFS. Evaluation of ε/τ values revealed that LFS/SLS-treated FTS and STS have similar transport pathways, whereas LFS-treated FTS and STS have lower ε/τ values. In addition, LFS/SLS treatment times were much shorter than LFS treatment times for both FTS and STS. Moreover, the simultaneous use of SLS and LFS not only results in synergistic enhancement, as reflected in the shorter skin treatment times, but also in more predictable and reproducible skin perturbation. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci.

Low-frequency Sonophoresis: Application to the Transdermal Delivery of Macromolecules and Hydrophilic Drugs

Transdermal delivery of macromolecules provides an attractive alternative route of drug administration when compared to oral delivery and hypodermic injection because of its ability to bypass the harsh gastrointestinal tract and deliver therapeutics non-invasively. However, the barrier properties of the skin only allow small, hydrophobic permeants to traverse the skin passively, greatly limiting the number of molecules that can be delivered via this route. The use of low-frequency ultrasound for the transdermal delivery of drugs, referred to as low-frequency sonophoresis (LFS), has been shown to increase skin permeability to a wide range of therapeutic compounds, including both hydrophilic molecules and macromolecules. Recent research has demonstrated the feasibility of delivering proteins, hormones, vaccines, liposomes and other nanoparticles through LFS-treated skin. In vivo studies have also established that LFS can act as a physical immunization adjuvant. LFS technology is already clinically available for use with topical anesthetics, with other technologies currently under investigation.

On Firm Ground: IP Protection of Therapeutic Nanoparticles

Biodegradable Microfluidic Scaffolds for Tissue Engineering from Amino Alcohol-based Poly(ester Amide) Elastomers

Biodegradable polymers with high mechanical strength, flexibility and optical transparency, optimal degradation properties and biocompatibility are critical to the success of tissue engineered devices and drug delivery systems. Most biodegradable polymers suffer from a short half life due to rapid degradation upon implantation, exceedingly high stiffness, and limited ability to functionalize the surface with chemical moieties. This work describes the fabrication of microfluidic networks from poly(ester amide), poly(1,3-diamino-2-hydroxypropane-co-polyol sebacate) (APS), a recently developed biodegradable elastomeric poly(ester amide). Microfluidic scaffolds constructed from APS exhibit a much lower Young's Modulus and a significantly longer degradation half-life than those of previously reported systems. The device is fabricated using a modified replica-molding technique, which is rapid, inexpensive, reproducible, and scalable, making the approach ideal for both rapid prototyping and manufacturing of tissue engineering scaffolds.

Indirect Low-intensity Ultrasonic Stimulation for Tissue Engineering

Low-intensity ultrasound (LIUS) treatment has been shown to increase mass transport, which could benefit tissue grafts during the immediate postimplant period, when blood supply to the implanted tissue is suboptimal. In this in vitro study, we investigated effects of LIUS stimulation on dye diffusion, proliferation, metabolism, and tropomyosin expression of muscle cells (C2C12) and on tissue viability and gene expression of human adipose tissue organoids. We found that LIUS increased dye diffusion within adjacent tissue culture wells and caused anisotropic diffusion patterns. This effect was confirmed by a hydrophone measurement resulting in acoustic pressure 150-341 Pa in wells. Cellular studies showed that LIUS significantly increased proliferation, metabolic activity, and expression of tropomyosin. Adipose tissue treated with LIUS showed significantly increased metabolic activity and the cells had similar morphology to normal unilocular adipocytes. Gene analysis showed that tumor necrosis factor-alpha expression (a marker for tissue damage) was significantly lower for stimulated organoids than for control groups. Our data suggests that LIUS could be a useful modality for improving graft survival in vivo.

Selective Removal of Photoreceptor Cells in Vivo Using the Biodegradable Elastomer Poly(glycerol Sebacate)

Retinal transplantation experiments have advanced considerably during recent years, but remaining diseased photoreceptor cells in the host retina physically obstruct the development of graft-host neuronal contacts that are required for vision. We here report selective removal of photoreceptors using the biodegradable elastomer poly(glycerol sebacate) (PGS). A 1 × 3 mm PGS membrane was implanted in the subretinal space of normal rabbit eyes, and morphologic specimens were examined with hematoxylin and eosin staining and a panel of immunohistochemical markers. Seven days postoperatively, a patent separation of the neuroretina and retinal pigment epithelium was found as well as loss of several rows of photoreceptors in combination with massive terminal transferase-mediated dUTP nick-end labeling (TUNEL) staining for apoptosis in the outer nuclear layer. After 28 days, the neuroretina was reattached, the PGS membrane had degraded, and photoreceptors were absent in the implantation area. Activated Müller cells were found in the entire retina in 7-day specimens, and in the implantation area after 28 days. AII amacrine and rod bipolar cell morphology was not affected, except for disrupted dendritic branching, which was present in rod bipolar cells in 28-day specimens. We conclude that retinal detachment induced by the biodegradable PGS membrane creates a permissive environment in which graft-host neuronal connections may be facilitated in future retinal transplantation experiments.

Engineering Systems for the Generation of Patterned Co-cultures for Controlling Cell-cell Interactions

Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. SCOPE OF THE REVIEW: We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues.

Transport Pathways and Enhancement Mechanisms Within Localized and Non-localized Transport Regions in Skin Treated with Low-frequency Sonophoresis and Sodium Lauryl Sulfate

Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, highly perturbed skin regions, known as localized transport regions (LTRs), exist. Despite these findings, little research has been conducted to identify intrinsic properties and formation mechanisms of LTRs and the surrounding less-perturbed non-LTRs. By independently analyzing LTR, non-LTR, and total skin samples treated at multiple LFS frequencies, we found that the pore radii (r(pore)) within non-LTRs are frequency-independent, ranging from 18.2 to 18.5 Å, but significantly larger than r(pore) of native skin samples (13.6 Å). Conversely, r(pore) within LTRs increase significantly with decreasing frequency from 161 to 276 Å and to ∞ (>300 Å) for LFS/SLS-treated skin at 60, 40, and 20 kHz, respectively. Our findings suggest that different mechanisms contribute to skin permeability enhancement within each skin region. We propose that the enhancement mechanism within LTRs is the frequency-dependent process of cavitation-induced microjet collapse at the skin surface, whereas the increased r(pore) values in non-LTRs are likely due to SLS perturbation, with enhanced penetration of SLS into the skin resulting from the frequency-independent process of microstreaming.

Molecular Biomarker Candidates of Acute Kidney Injury in Zero-hour Renal Transplant Needle Biopsies

The aim of this study was to assess gene expression levels of four biomarker candidates [lipocalin 2 (LCN2), the kidney injury molecule 1 (HAVCR1), netrin 1, and the cysteine-rich, angiogenic inducer, 61] in the tubulointerstitial and the glomerular compartment of zero-hour kidney biopsies in order to predict developing delayed graft function (DGF). Thirty-four needle kidney biopsy samples of deceased donors were manually microdissected. Relative gene expression levels were determined by real-time RT-PCR. For the validation of the biomarker candidates, we calculated a mixed model comparing kidneys with DGF, primary function and control samples from the healthy parts of tumor nephrectomies. Significant biomarker candidates were analyzed together with donor age in multivariable regression models to determine the prognostic value. Expression levels of LCN2 and HAVCR1 in the tubulointerstitium were significantly upregulated in the DGF group (LCN2: fold change = 3.78, P = 0.031 and HAVCR1: fold change = 3.44, P = 0.010). Odds ratios of both genes could not reach significance in the multivariable model together with donor age. The area under the curve of the receiver operating characteristic ranges between 0.75 and 0.83. LCN2 and HAVCR1 gene expression levels in zero-hour biopsies show potential to act as early biomarkers for DGF.

Mortality Related to Actigraphic Long and Short Sleep

The folk belief that we should sleep 8 h seems to be incorrect. Numerous studies have shown that self-reported sleep longer than 7.5 h or shorter than 6.5 h predicts increased mortality risk. This study examined if prospectively-determined objective sleep duration, as estimated by wrist actigraphy, was associated with mortality risks.

An Injectable Thiol-acrylate Poly(ethylene Glycol) Hydrogel for Sustained Release of Methylprednisolone Sodium Succinate

Clinically available injectable hydrogels face technical challenges associated with swelling after injection and toxicity from unreacted constituents that impede their performance as surgical biomaterials. To overcome these challenges, we developed a system where chemical gelation was controlled by a conjugate Michael addition between thiol and acrylate in aqueous media, with 97% monomer conversion and 6 wt.% sol fraction. The hydrogel exhibited syneresis on equilibration, reducing to 59.7% of its initial volume. It had mechanical properties similar to soft human tissue with an elastic modulus of 189.8 kPa. Furthermore, a mesh size of 6.9 nm resulted in sustained release of methylprednisolone sodium succinate with a loading efficiency of 2 mg/mL. Functionalization with 50 μg/mL of an oligolysine peptide resulted in attachment of freshly isolated murine mesenchymal stem cells. The rational design of the physical, chemical and biological properties of the hydrogel makes it a potentially promising candidate for injectable applications.

Enhancing the Transdermal Delivery of Rigid Nanoparticles Using the Simultaneous Application of Ultrasound and Sodium Lauryl Sulfate

The potential of rigid nanoparticles to serve as transdermal drug carriers can be greatly enhanced by improving their skin penetration. Therefore, the simultaneous application of ultrasound and sodium lauryl sulfate (referred to as US/SLS) was evaluated as a skin pre-treatment method for enhancing the passive transdermal delivery of nanoparticles. We utilized inductively coupled plasma mass spectrometry and an improved application of confocal microscopy to compare the delivery of 10- and 20-nm cationic, neutral, and anionic quantum dots (QDs) into US/SLS-treated and untreated pig split-thickness skin. Our findings include: (a) ∼0.01% of the QDs penetrate the dermis of untreated skin (which we quantify for the first time), (b) the QDs fully permeate US/SLS-treated skin, (c) the two cationic QDs studied exhibit different extents of skin penetration and dermal clearance, and (d) the QD skin penetration is heterogeneous. We discuss routes of nanoparticle skin penetration and the application of the methods described herein to address conflicting literature reports on nanoparticle skin penetration. We conclude that US/SLS treatment significantly enhances QD transdermal penetration by 500-1300%. Our findings suggest that an optimum surface charge exists for nanoparticle skin penetration, and motivate the application of nanoparticle carriers to US/SLS-treated skin for enhanced transdermal drug delivery.

Human Embryonic Stem Cell-derived Microvascular Grafts for Cardiac Tissue Preservation After Myocardial Infarction

We present use of a synthetic, injectable matrix metalloproteinase (MMP)-responsive, bioactive hydrogel as an in situ forming scaffold to deliver thymosin β4 (Tβ4), a pro-angiogenic and pro-survival factor, along with vascular cells derived from human embryonic stem cells (hESC) in ischemic injuries to the heart in a rat model. The gel was found to substitute the degrading extracellular matrix in the infarcted myocardium of rats and to promote structural organization of native endothelial cells, while some of the delivered hESC-derived vascular cells formed de novo capillaries in the infarct zone. Magnetic resonance imaging (MRI) revealed that the microvascular grafts effectively preserved contractile performance 3 d and 6 wk after myocardial infarction, attenuated left ventricular dilation, and decreased infarct size as compared to infarcted rats treated with PBS injection as a control (3 d ejection fraction, + ∼7%, P < 0.001; 6 wk ejection faction, + ∼12%, P < 0.001). Elevation in vessel density was observed in response to treatment, which may be due in part to elevations in human (donor)-derived cytokines EGF, VEGF and HGF (1 d). Thus, a clinically relevant matrix for dual delivery of vascular cells and drugs may be useful in engineering sustained tissue preservation and potentially regenerating ischemic cardiac tissue.

Evaluation of Viscoelastic Poly(ethylene Glycol) Sols As Vitreous Substitutes in an Experimental Vitrectomy Model in Rabbits

The aim of this study was to employ an experimental protocol for in vivo evaluation of sols of 5 wt.% poly(ethylene glycol) (PEG) in phosphate-buffered saline as artificial vitreous substitutes. A 20 gauge pars plana vitrectomy and posterior vitreous detachment were performed in the right eye of eight pigmented rabbits. Approximately 1 ml of the viscoelastic PEG sols was then injected into the vitreous space of six eyes. PEG with an average molecular weight of 300,000 and 400,000 g mol(-1) was used in two and four eyes, respectively. Two eyes received balanced salt solution and served as controls. Full-field electroretinography was carried out and intra-ocular pressure (IOP, palpation) measured pre- and post-operatively at regular intervals up to 41 days. The rabbits were killed and the eyes examined by retinal photography, gross macroscopic examination and histology. The viscoelastic sols were successfully injected and remained translucent throughout the post-operative period, with some inferior formation of precipitates. None of the eyes displayed IOP elevation post-operatively, but in three of the PEG sol injected eyes transient hypotony was noted. One eye sustained retinal detachment during surgery and another two in the post-operative period. ERG recordings confirmed preservation of retinal function in three out of four eyes injected with 400,000 g mol(-1) PEG. Histological examination revealed up-regulation of glial acidic fibrillary protein in Müller cells in PEG sol injected eyes, but normal overall morphology in eyes with attached retinas. The viscosity of the sol was not retained throughout the post-operative period, indicating the demand for polymer cross-linking to increase residence time. The results provide promising preliminary results on the use of PEG hydrogels as a vitreous substitute.

Real-time in Vivo Detection of Biomaterial-induced Reactive Oxygen Species

The non-specific host response to implanted biomaterials is often a key challenge of medical device design. To evaluate biocompatibility, measuring the release of reactive oxygen species (ROS) produced by inflammatory cells in response to biomaterial surfaces is a well-established method. However, the detection of ROS in response to materials implanted in vivo has not yet been demonstrated. Here, we develop a bioluminescence whole animal imaging approach to observe ROS released in response to subcutaneously-implanted materials in live animals. We compared the real-time generation of ROS in response to two representative materials, polystyrene and alginate, over the course of 28 days. High levels of ROS were observed near polystyrene, but not alginate implants, and persisted throughout the course of 28 days. Histological analysis revealed that high levels of ROS correlated not only with the presence of phagocytic cells at early timepoints, but also fibrosis at later timepoints, suggesting that ROS may be involved in both the acute and chronic phase of the foreign body response. These data are the first in vivo demonstration of ROS generation in response to implanted materials, and describe a novel technique to evaluate the host response.

Nanotechnological Strategies for Engineering Complex Tissues

Tissue engineering aims at developing functional substitutes for damaged tissues and organs. Before transplantation, cells are generally seeded on biomaterial scaffolds that recapitulate the extracellular matrix and provide cells with information that is important for tissue development. Here we review the nanocomposite nature of the extracellular matrix, describe the design considerations for different tissues and discuss the impact of nanostructures on the properties of scaffolds and their uses in monitoring the behaviour of engineered tissues. We also examine the different nanodevices used to trigger certain processes for tissue development, and offer our view on the principal challenges and prospects of applying nanotechnology in tissue engineering.

Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex

Intracranial Microcapsule Drug Delivery Device for the Treatment of an Experimental Gliosarcoma Model

Controlled-release drug delivery systems are capable of treating debilitating diseases, including cancer. Brain cancer, in particular glioblastoma multiforme (GBM), is an extremely invasive cancer with a dismal prognosis. The use of drugs capable of crossing the blood-brain barrier has shown modest prolongation in patient survival, but not without unsatisfactory systemic, dose-limiting toxicity. Among the reasons for this improvement include a better understanding of the challenges of delivery of effective agents directly to the brain tumor site. The combination of carmustine delivered by biodegradable polyanhydride wafers (Gliadel(®)), with the systemic alkylating agent, temozolomide, allows much higher effective doses of the drug while minimizing the systemic toxicity. We have previously shown that locally delivering these two drugs leads to further improvement in survival in experimental models. We postulated that microcapsule devices capable of releasing temozolomide would increase the therapeutic capability of this approach. A biocompatible drug delivery microcapsule device for the intracranial delivery of temozolomide is described. Drug release profiles from these microcapsules can be modulated based on the physical chemistry of the drug and the dimensions of the release orifices in these devices. The drug released from the microcapsules in these experiments was the clinically utilized chemotherapeutic agent, temozolomide. In vitro studies were performed in order to test the function, reliability, and drug release kinetics of the devices. The efficacy of the temozolomide-filled microcapsules was tested in an intracranial experimental rodent gliosarcoma model. Immunohistochemical analysis of tissue for evidence of DNA strand breaks via terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed. The experimental release curves showed mass flow rates of 36 μg/h for single-orifice devices and an 88 μg/h mass flow rate for multiple-orifice devices loaded with temozolomide. In vivo efficacy results showed that localized intracranial delivery of temozolomide from microcapsule devices was capable of prolonging animal survival and may offer a novel form of treatment for brain tumors.

Experimental and Molecular Dynamics Investigation into the Amphiphilic Nature of Sulforhodamine B

Sulforhodamine B (SRB), a common fluorescent dye, is often considered to be a purely hydrophilic molecule, having no impact on bulk or interfacial properties of aqueous solutions. This assumption is due to the high water solubility of SRB relative to most fluorescent probes. However, in the present study, we demonstrate that SRB is in fact an amphiphile, with the ability to adsorb at an air/water interface and to incorporate into sodium dodecyl sulfate (SDS) micelles. In fact, SRB reduces the surface tension of water by up to 23 mN/m, and the addition of SRB to an aqueous SDS solution induces a significant decrease in the cmc of SDS. Molecular dynamics simulations were conducted to gain a deeper understanding of these findings. The simulations revealed that SRB has defined polar "head" and nonpolar "tail" regions when adsorbed at the air/water interface as a monomer. In contrast, when incorporated into SDS micelles, only the sulfonate groups were found to be highly hydrated, suggesting that the majority of the SRB molecule penetrates into the micelle. To illustrate the implications of the amphiphilic nature of SRB, an interesting case study involving the effect of SRB on ultrasound-mediated transdermal drug delivery is presented.

Ultrasound-mediated Transdermal Drug Delivery: Mechanisms, Scope, and Emerging Trends

The use of ultrasound for the delivery of drugs to, or through, the skin is commonly known as sonophoresis or phonophoresis. The use of therapeutic and high frequencies of ultrasound (≥0.7MHz) for sonophoresis (HFS) dates back to as early as the 1950s, while low-frequency sonophoresis (LFS, 20-100kHz) has only been investigated significantly during the past two decades. Although HFS and LFS are similar because they both utilize ultrasound to increase the skin penetration of permeants, the mechanisms associated with each physical enhancer are different. Specifically, the location of cavitation and the extent to which each process can increase skin permeability are quite dissimilar. Although the applications of both technologies are different, they each have strengths that could allow them to improve current methods of local, regional, and systemic drug delivery. In this review, we will discuss the mechanisms associated with both HFS and LFS, specifically concentrating on the key mechanistic differences between these two skin treatment methods. Background on the relevant physics associated with ultrasound transmitted through aqueous media will also be discussed, along with implications of these phenomena on sonophoresis. Finally, a thorough review of the literature is included, dating back to the first published reports of sonophoresis, including a discussion of emerging trends in the field.

[Evaluation of Patients' Readiness for Surgery when Called from the Waiting List for Kidney Transplantation: Experience of the Budapest Centre]

The aim of this study was to assess the impact of the establishment of waiting list committee on recipient evaluation for kidney transplantation. Studies on this issue have not been previously reported.

A "Self-Pinning" Adhesive Based on Responsive Surface Wrinkles

Surface wrinkles are interesting since they form spontaneously into well-defined patterns. The mechanism of formation is well-studied and is associated with the development of a critical compressive stress that induces the elastic instability. In this work, we demonstrate surface wrinkles that dynamically change in response to a stimulus can improve interfacial adhesion with a hydrogel surface through the dynamic evolution of the wrinkle morphology. We observe that this control is related to the local pinning of the crack separation pathway facilitated by the surface wrinkles during debonding, which is dependent on the contact time with the hydrogel.

[Eurotransplant--new Possibility for the Hungarian Transplantation]

The year 2010 was a milestone in the history of transplantation in Hungary. The State Secretary for Health Issues announced a program in order to solve the serious problems of organ transplantation: 1) to increase waiting lists, 2) to raise donor numbers, 3) to establish a lung transplant program in the country, 4) to promote education and increase the knowledge base regarding transplantation for the public and the medical profession, and finally, 5) to begin negotiations for Hungary to join Eurotransplant. Joining Eurotransplant has been a priority of the transplant community. Finally, this year saw the Budapest Transplant Center perform 20% of their kidney transplants from living donors, up from a 5% frequency historically, an operation which is available in all four centers from this year.

Application of a Dense Gas Technique for Sterilizing Soft Biomaterials

Sterilization of soft biomaterials such as hydrogels is challenging because existing methods such as gamma irradiation, steam sterilization, or ethylene oxide sterilization, while effective at achieving high sterility assurance levels (SAL), may compromise their physicochemical properties and biocompatibility. New methods that effectively sterilize soft biomaterials without compromising their properties are therefore required. In this report, a dense-carbon dioxide (CO(2) )-based technique was used to sterilize soft polyethylene glycol (PEG)-based hydrogels while retaining their structure and physicochemical properties. Conventional sterilization methods such as gamma irradiation and steam sterilization severely compromised the structure of the hydrogels. PEG hydrogels with high water content and low elastic shear modulus (a measure of stiffness) were deliberately inoculated with bacteria and spores and then subjected to dense CO(2) . The dense CO(2) -based methods effectively sterilized the hydrogels achieving a SAL of 10(-7) without compromising the viscoelastic properties, pH, water-content, and structure of the gels. Furthermore, dense CO(2) -treated gels were biocompatible and non-toxic when implanted subcutaneously in ferrets. The application of novel dense CO(2) -based methods to sterilize soft biomaterials has implications in developing safe sterilization methods for soft biomedical implants such as dermal fillers and viscosupplements.

Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex

Magnetically Triggered Nanocomposite Membranes: a Versatile Platform for Triggered Drug Release

Drug delivery devices based on nanocomposite membranes containing thermoresponsive nanogels and superparamagnetic nanoparticles have been demonstrated to provide reversible, on-off drug release upon application (and removal) of an oscillating magnetic field. We show that the dose of drug delivered across the membrane can be tuned by engineering the phase transition temperature of the nanogel, the loading density of nanogels in the membrane, and the membrane thickness, allowing for on-state delivery of model drugs over at least 2 orders of magnitude (0.1-10 μg/h). The zero-order kinetics of drug release across the membranes permit drug doses from a specific device to be tuned according to the duration of the magnetic field. Drugs over a broad range of molecular weights (500-40000 Da) can be delivered by the same membrane device. Membrane-to-membrane and cycle-to-cycle reproducibility is demonstrated, suggesting the general utility of these membranes for drug delivery.

Current Trends in Nanobiosensor Technology

The development of tools and processes used to fabricate, measure, and image nanoscale objects has lead to a wide range of work devoted to producing sensors that interact with extremely small numbers (or an extremely small concentration) of analyte molecules. These advances are particularly exciting in the context of biosensing, where the demands for low concentration detection and high specificity are great. Nanoscale biosensors, or nanobiosensors, provide researchers with an unprecedented level of sensitivity, often to the single molecule level. The use of biomolecule-functionalized surfaces can dramatically boost the specificity of the detection system, but can also yield reproducibility problems and increased complexity. Several nanobiosensor architectures based on mechanical devices, optical resonators, functionalized nanoparticles, nanowires, nanotubes, and nanofibers have been demonstrated in the lab. As nanobiosensor technology becomes more refined and reliable, it is likely it will eventually make its way from the lab to the clinic, where future lab-on-a-chip devices incorporating an array of nanobiosensors could be used for rapid screening of a wide variety of analytes at low cost using small samples of patient material.

A Novel Family of Biodegradable Poly(ester Amide) Elastomers

Spatiotemporal Effects of a Controlled-release Anti-inflammatory Drug on the Cellular Dynamics of Host Response

In general, biomaterials induce a non-specific host response when implanted in the body. This reaction has the potential to interfere with the function of the implanted materials. One method for controlling the host response is through local, controlled-release of anti-inflammatory agents. Herein, we investigate the spatial and temporal effects of an anti-inflammatory drug on the cellular dynamics of the innate immune response to subcutaneously implanted poly(lactic-co-glycolic) microparticles. Noninvasive fluorescence imaging was used to investigate the influence of dexamethasone drug loading and release kinetics on the local and systemic inhibition of inflammatory cellular activities. Temporal monitoring of host response showed that inhibition of inflammatory proteases in the early phase was correlated with decreased cellular infiltration in the later phase of the foreign body response. We believe that using controlled-release anti-inflammatory platforms to modulate early cellular dynamics will be useful in reducing the foreign body response to implanted biomaterials and medical devices.

Synthesis of Size-tunable Polymeric Nanoparticles Enabled by 3D Hydrodynamic Flow Focusing in Single-layer Microchannels

Responsive Microgrooves for the Formation of Harvestable Tissue Constructs

Given its biocompatibility, elasticity, and gas permeability, poly(dimethylsiloxane) (PDMS) is widely used to fabricate microgrooves and microfluidic devices for three-dimensional (3D) cell culture studies. However, conformal coating of complex PDMS devices prepared by standard microfabrication techniques with desired chemical functionality is challenging. This study describes the conformal coating of PDMS microgrooves with poly(N-isopropylacrylamide) (PNIPAAm) by using initiated chemical vapor deposition (iCVD). These microgrooves guided the formation of tissue constructs from NIH-3T3 fibroblasts that could be retrieved by the temperature-dependent swelling property and hydrophilicity change of the PNIPAAm. The thickness of swollen PNIPAAm films at 24 °C was approximately 3 times greater than at 37 °C. Furthermore, PNIPAAm-coated microgroove surfaces exhibit increased hydrophilicity at 24 °C (contact angle θ = 30° ± 2) compared to 37 °C (θ = 50° ± 1). Thus PNIPAAm film on the microgrooves exhibits responsive swelling with higher hydrophilicity at room temperature, which could be used to retrieve tissue constructs. The resulting tissue constructs were the same size as the grooves and could be used as modules in tissue fabrication. Given its ability to form and retrieve cell aggregates and its integration with standard microfabrication, PNIPAAm-coated PDMS templates may become useful for 3D cell culture applications in tissue engineering and drug discovery.

Chondrogenic Priming Adipose-mesenchymal Stem Cells for Cartilage Tissue Regeneration

Chondrocytes lose their ability to produce cartilaginous matrix during multiplication in culture through repeated passages, resulting in inferior tissue phenotype. To overcome the limited amount of primary chondrocytes, we aimed to determine the optimal culture condition for in vitro/in vivo cartilage regeneration using human adipose-derived mesenchymal stem cells (AMSCs).

Assessment of Canine Vocal Fold Function After Injection of a New Biomaterial Designed to Treat Phonatory Mucosal Scarring

Most cases of irresolvable hoarseness are due to deficiencies in the pliability and volume of the superficial lamina propria of the phonatory mucosa. By using a US Food and Drug Administration-approved polymer, polyethylene glycol (PEG), we created a novel hydrogel (PEG30) and investigated its effects on multiple vocal fold structural and functional parameters.

Elasticity and Safety of Alkoxyethyl Cyanoacrylate Tissue Adhesives

Cyanoacrylate glues are easily applied to wounds with good cosmetic results. However, they tend to be brittle and can induce local tissue toxicity. A series of cyanoacrylate monomers with a flexible ether linkage and varying side-chain lengths was synthesized and characterized for potential use as tissue adhesives. The effect of side-chain length on synthesis yield, physical and mechanical properties, formaldehyde generation, cytotoxicity in vitro and biocompatibility in vivo were examined. The incorporation of etheric oxygen allowed the production of flexible monomers with good adhesive strength. Monomers with longer side-chains were found to have less toxicity both in vitro and in vivo. Polymerized hexoxyethyl cyanoacrylate was more elastic than its commercially available and widely used alkyl analog 2-octyl cyanoacrylate, without compromising biocompatibility.

Renoprotective Effect of Erythropoietin in Rats Subjected to Ischemia/reperfusion Injury: Gender Differences

Renal ischemia reperfusion injury induces gender-dependent heat-shock protein 72 expression, which maintains membrane localization of renal Na(+)/K(+)ATPase-α1. The erythropoietin has a protecting effect against ischemia reperfusion injury in various organs. In this study, we investigated whether erythropoietin exerts a beneficial effect against post-ischemic renal injury. Furthermore, we studied the erythropoietin signaling on heat-shock protein 72 and Na(+)/K(+)ATPase-α1 expression and localization.

Facile Synthetic Route for Surface-functionalized Magnetic Nanoparticles: Cell Labeling and Magnetic Resonance Imaging Studies

Currently available methods to stably disperse iron oxide nanoparticles (IONPs) in aqueous solution need to be improved due to potential aggregation, reduction of superparamagnetism, and the use of toxic reagents. Herein, we present a facile strategy for aqueous transfer and dispersion of organic-synthesized IONPs using only polyethylene glycol (PEG), a biocompatible polymer. A library of PEG derivatives was screened, and it was determined that amine-functionalized six-armed PEG, 6(PEG-NH(2)), was the most effective dispersion agent. The 6(PEG-NH(2))-modified IONPs (IONP-6PEG) were stable after extensive washing, exhibited high superparamagnetism, and could be used as a platform material for secondary surface functionalization with bioactive polymers. IONP-6PEG biofunctionalized with hyaluronic acid (IONP-6PEG-HA) was shown to specifically label mesenchymal stem cells and demonstrate MR contrast potential with high r(2) relaxivity (442.7 s(-1)mM(-1)) compared to the commercially available Feridex (182.1 s(-1)mM(-1)).

New Chances for Hungarian Transplantation--preface to the 12th Congress of the Hungarian Transplantation Society

The year 2010 was a milestone in the history of transplantation in Hungary. Hungarian politicians became interested in solving the serious problems facing organ transplantation in our country. The State Secretary announced a program to (1) increase waiting lists, (2) raise donor numbers, (3) establish a lung transplant program, (4) promote education and increase the knowledge base regarding transplantation for the public and the medical profession, and finally, (5) to begin the negotiations for Hungary to join Eurotransplant. Joining Eurotransplant has been a priority of the transplant community. Finally, this year saw the Budapest Transplant Center perform 20% of their transplants from living kidney donors, up from 5% historically.

Effects of Ligands with Different Water Solubilities on Self-assembly and Properties of Targeted Nanoparticles

The engineering of drug-encapsulated targeted nanoparticles (NPs) has the potential to revolutionize drug therapy. A major challenge for the smooth translation of targeted NPs to the clinic has been developing methods for the prediction and optimization of the NP surface composition, especially when targeting ligands (TL) of different chemical properties are involved in the NP self-assembly process. Here we investigated the self-assembly and properties of two different targeted NPs decorated with two widely used TLs that have different water solubilities, and developed methods to characterize and optimize NP surface composition. We synthesized two different biofunctional polymers composed of poly(lactide-co-glycolide)-b-polyethyleneglycol-RGD (PLGA-PEG-RGD, high water solubility TL) and PLGA-PEG-Folate (low water solubility TL). Targeted NPs with different ligand densities were prepared by mixing TL-conjugated polymers with non-conjugated PLGA-PEG at different ratios through nanoprecipitation. The NP surface composition was quantified and the results revealed two distinct nanoparticle assembly behaviors: for the case of PLGA-PEG-RGD, nearly all RGD molecules conjugated to the polymer were found to be on the surface of the NPs. In contrast, only ∼20% of the folate from PLGA-PEG-Folate was present on the NP surface while the rest remained presumably buried in the PLGA NP core due to hydrophobic interactions of PLGA and folate. Finally, in vitro phagocytosis and cell targeting of NPs were investigated, from which a window of NP formulations exhibiting minimum uptake by macrophages and maximum uptake by targeted cells was determined. These results underscore the impact that the ligand chemical properties have on the targeting capabilities of self-assembled targeted nanoparticles and provide an engineering strategy for improving their targeting specificity.

Five Years of SiRNA Delivery: Spotlight on Gold Nanoparticles

Gold nanoparticles have become widely used in scientific research due to their unique physical and chemical properties. In the last several years their use as siRNA delivery agents has been investigated. Here, progress made using gold nanoparticles for siRNA delivery is described and the different strategies employed are compared.

Poly(β-amino Ester)-DNA Complexes: Time-resolved Fluorescence and Cellular Transfection Studies

A large number of different polymers have been developed and studied for application as DNA carriers for non-viral gene delivery, but the DNA binding properties are not understood. This study describes the efficiency of nanoparticle formation by time-resolved fluorescence measurements for poly(β-amino esters), cationic biodegradable polymers with DNA complexation and transfection capability. From the large library of poly(β-amino esters) ten polymers with different transfection efficacies were chosen for this study. The binding constants for nanoparticle formation were determined and compared to with the same method. Although the DNA binding efficiency of the amine groups are similar for both types of polymers, the overall binding constants are an order of magnitude smaller for poly(β-amino esters) than for 25 kDa polyethylenimines, yet poly(β-amino esters) show comparable DNA transfection efficacy with polyethylenimines. Within this series of polymers the transfection efficacy showed increasing trend in association with relative efficiency of nanoparticle formation.

Synergistic Silencing: Combinations of Lipid-like Materials for Efficacious SiRNA Delivery

Despite the promise of RNA interference (RNAi) therapeutics, progress toward the clinic has been slowed by the difficulty of delivering short interfering RNA (siRNA) into cellular targets within the body. Nearly all siRNA delivery vehicles developed to date employ a single cationic or ionizable material. In order to increase the material space available for development of siRNA delivery therapeutics, this study examined the possibility of using binary combinations of ionizable lipid-like materials to synergistically achieve gene silencing. Interestingly, it was found that ineffective single lipid-like materials could be formulated together in a single delivery vehicle to induce near-complete knockdown of firefly luciferase and factor VII in HeLa cells and in mice, respectively. Microscopy experiments suggested that synergistic action resulted when combining materials that respectively mediated cellular uptake and endosomal escape, two important steps in the delivery process. Together, the data indicate that formulating lipid-like materials in combination can significantly improve siRNA delivery outcomes while increasing the material space available for therapeutic development. It is anticipated that this binary formulation strategy could be applicable to any siRNA delivery material in any target cell population that utilizes the two-step endosomal delivery pathway.

Intracellular Trafficking of Polyamidoamine-poly(ethylene Glycol) Block Copolymers in DNA Delivery

The delivery of nucleic acids has the potential to revolutionize medicine by allowing previously untreatable diseases to be clinically addressed. Viral delivery systems have shown immunogenicity and toxicity dangers, but synthetic vectors have lagged in transfection efficiency. Previously, we developed a modular, linear-dendritic block copolymer architecture with high gene transfection efficiency compared to commercial standards. This rationally designed system makes use of a cationic dendritic block to condense the anionic DNA and forms complexes with favorable endosomal escape properties. The linear block provides biocompatibility and protection from serum proteins, and can be functionalized with a targeting ligand. In this work, we quantitate performance of this system with respect to intracellular barriers to gene delivery using both high-throughput and traditional approaches. An image-based, high-throughput assay for endosomal escape is described and applied to the block copolymer system. Nuclear entry is demonstrated to be the most significant barrier to more efficient delivery and will be addressed in future versions of the system.

Serum Selenium, Genetic Variation in Selenoenzymes, and Risk of Colorectal Cancer: Primary Analysis from the Women's Health Initiative Observational Study and Meta-analysis

Selenium may prevent colorectal cancer. However, several previous studies are small and few investigated the association between selenium and colorectal cancer among women whose selenium metabolism may differ from men. Furthermore, genetic variants in selenoenzymes may be associated with colorectal cancer risk.

Responsive Micromolds for Sequential Patterning of Hydrogel Microstructures

Microscale hydrogels have been shown to be beneficial for various applications such as tissue engineering and drug delivery. A key aspect in these applications is the spatial organization of biological entities or chemical compounds within hydrogel microstructures. For this purpose, sequentially patterned microgels can be used to spatially organize either living materials to mimic biological complexity or multiple chemicals to design functional microparticles for drug delivery. Photolithographic methods are the most common way to pattern microscale hydrogels but are limited to photocrosslinkable polymers. So far, conventional micromolding approaches use static molds to fabricate structures, limiting the resulting shapes that can be generated. Herein, we describe a dynamic micromolding technique to fabricate sequentially patterned hydrogel microstructures by exploiting the thermoresponsiveness of poly(N-isopropylacrylamide)-based micromolds. These responsive micromolds exhibited shape changes under temperature variations, facilitating the sequential molding of microgels at two different temperatures. We fabricated multicompartmental striped, cylindrical, and cubic microgels that encapsulated fluorescent polymer microspheres or different cell types. These responsive micromolds can be used to immobilize living materials or chemicals into sequentially patterned hydrogel microstructures which may potentially be useful for a range of applications at the interface of chemistry, materials science and engineering, and biology.

Combinatorial Synthesis of Chemically Diverse Core-shell Nanoparticles for Intracellular Delivery

Analogous to an assembly line, we employed a modular design for the high-throughput study of 1,536 structurally distinct nanoparticles with cationic cores and variable shells. This enabled elucidation of complexation, internalization, and delivery trends that could only be learned through evaluation of a large library. Using robotic automation, epoxide-functionalized block polymers were combinatorially cross-linked with a diverse library of amines, followed by measurement of molecular weight, diameter, RNA complexation, cellular internalization, and in vitro siRNA and pDNA delivery. Analysis revealed structure-function relationships and beneficial design guidelines, including a higher reactive block weight fraction, stoichiometric equivalence between epoxides and amines, and thin hydrophilic shells. Cross-linkers optimally possessed tertiary dimethylamine or piperazine groups and potential buffering capacity. Covalent cholesterol attachment allowed for transfection in vivo to liver hepatocytes in mice. The ability to tune the chemical nature of the core and shell may afford utility of these materials in additional applications.

Research Agenda. Promoting Convergence in Biomedical Science

Microgels for Efficient Protein Purification

Directing Human Embryonic Stem Cell Differentiation by Non-viral Delivery of SiRNA in 3D Culture

Human embryonic stem cells (hESCs) hold great potential as a resource for regenerative medicine. Before achieving therapeutic relevancy, methods must be developed to control stem cell differentiation. It is clear that stem cells can respond to genetic signals, such as those imparted by nucleic acids, to promote lineage-specific differentiation. Here we have developed an efficient system for delivering siRNA to hESCs in a 3D culture matrix using lipid-like materials. We show that non-viral siRNA delivery in a 3D scaffolds can efficiently knockdown 90% of GFP expression in GFP-hESCs. We further show that this system can be used as a platform for directing hESC differentiation. Through siRNA silencing of the KDR receptor gene, we achieve concurrent downregulation (60-90%) in genes representative of the endoderm germ layer and significant upregulation of genes representative of the mesoderm germ layer (27-90 fold). This demonstrates that siRNA can direct stem cell differentiation by blocking genes representative of one germ layer and also provides a particularly powerful means to isolate the endoderm germ layer from the mesoderm and ectoderm. This ability to inhibit endoderm germ layer differentiation could allow for improved control over hESC differentiation to desired cell types.

Hydroxyapatite for Keratoprosthesis Biointegration

Integration of keratoprosthesis with the surrounding cornea is very important in preventing bacterial invasion, which may cause ocular injury. Here the authors investigated whether hydroxyapatite (HAp) coating can improve keratoprosthesis (KPro) biointegration, using polymethyl methacrylate (PMMA)--the principal component of the Boston KPro--as a model polymer.

Liposomes for HIV Prophylaxis

There are approximately 33.4 million adults living with HIV worldwide of which an estimated 15.7 million are women. Although there has been enormous progress in the therapy of HIV/AIDS, treatment is not curative. Prevention is therefore of paramount importance, but vaccine-based and microbicidal approaches are still in their infancy. Since women acquire the virus largely through sexual intercourse, we developed liposomal systems potentially suitable for intra-vaginal use to prevent HIV-1 infection. We formulated liposomes from a range of naturally-occurring and synthetic lipids with varying physicochemical properties, and tested their ability to inhibit infection of transformed cells that express receptors specific to the virus. We identified formulations with the most favorable balance between decreasing HIV infection and causing cytotoxicity (i.e. therapeutic index). The therapeutic index improved with increasing cardiolipin content, and degree of unsaturation. Tissue reaction to these formulations was benign after intra-vaginal instillation in an in vivo female mouse model. These results support the potential use of cardiolipin-based liposomes enriched with synthetic lipids as microbicides for the prevention of HIV infection in women.

Three-dimensional Biomaterials for the Study of Human Pluripotent Stem Cells

The self-renewal and differentiation of human pluripotent stem cells (hPSCs) have typically been studied in flat, two-dimensional (2D) environments. In this Perspective, we argue that 3D model systems may be needed in addition, as they mimic the natural 3D tissue organization more closely. We survey methods that have used 3D biomaterials for expansion of undifferentiated hPSCs, directed differentiation of hPSCs and transplantation of differentiated hPSCs in vivo.

Materials Science: Dry Solution to a Sticky Problem

Nanoparticles Targeting the Infarcted Heart

We report a nanoparticulate system capable of targeting the heart after myocardial infarction (MI). Targeting is based on overexpression of angiotensin II type 1 (AT1) receptor in the infarcted heart. Liposomes 142 nm in diameter were conjugated with a ligand specific to AT1. The nanoparticles were able to specifically target cardiac cells in vitro, and in the infarcted heart after intravenous injection in vivo. This system may be useful for delivering therapeutic agents specifically to the infarcted heart.

Low-Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity

Nanowired Three-dimensional Cardiac Patches

Engineered cardiac patches for treating damaged heart tissues after a heart attack are normally produced by seeding heart cells within three-dimensional porous biomaterial scaffolds. These biomaterials, which are usually made of either biological polymers such as alginate or synthetic polymers such as poly(lactic acid) (PLA), help cells organize into functioning tissues, but poor conductivity of these materials limits the ability of the patch to contract strongly as a unit. Here, we show that incorporating gold nanowires within alginate scaffolds can bridge the electrically resistant pore walls of alginate and improve electrical communication between adjacent cardiac cells. Tissues grown on these composite matrices were thicker and better aligned than those grown on pristine alginate and when electrically stimulated, the cells in these tissues contracted synchronously. Furthermore, higher levels of the proteins involved in muscle contraction and electrical coupling are detected in the composite matrices. It is expected that the integration of conducting nanowires within three-dimensional scaffolds may improve the therapeutic value of current cardiac patches.

The Influence of Scaffold Elasticity on Germ Layer Specification of Human Embryonic Stem Cells

Mechanical forces are critical to embryogenesis, specifically, in the lineage-specification gastrulation phase, whereupon the embryo is transformed from a simple spherical ball of cells to a multi-layered organism, containing properly organized endoderm, mesoderm, and ectoderm germ layers. Several reports have proposed that such directed and coordinated movements of large cell collectives are driven by cellular responses to cell deformations and cell-generated forces. To better understand these environmental-induced cell changes, we have modeled the germ layer formation process by culturing human embryonic stem cells (hESCs) on three dimensional (3D) scaffolds with stiffness engineered to model that found in specific germ layers. We show that differentiation to each germ layer was promoted by a different stiffness threshold of the scaffolds, reminiscent of the forces exerted during the gastrulation process. The overall results suggest that three dimensional (3D) scaffolds can recapitulate the mechanical stimuli required for directing hESC differentiation and that these stimuli can play a significant role in determining hESC fate.

Therapeutic SiRNA Silencing in Inflammatory Monocytes in Mice

Excessive and prolonged activity of inflammatory monocytes is a hallmark of many diseases with an inflammatory component. In such conditions, precise targeting of these cells could be therapeutically beneficial while sparing many essential functions of the innate immune system, thus limiting unwanted effects. Inflammatory monocytes-but not the noninflammatory subset-depend on the chemokine receptor CCR2 for localization to injured tissue. Here we present an optimized lipid nanoparticle and a CCR2-silencing short interfering RNA that, when administered systemically in mice, show rapid blood clearance, accumulate in spleen and bone marrow, and localize to monocytes. Efficient degradation of CCR2 mRNA in monocytes prevents their accumulation in sites of inflammation. Specifically, the treatment attenuates their number in atherosclerotic plaques, reduces infarct size after coronary artery occlusion, prolongs normoglycemia in diabetic mice after pancreatic islet transplantation, and results in reduced tumor volumes and lower numbers of tumor-associated macrophages.

Reshaping the Future of Nanopharmaceuticals: Ad Iudicium

We present views on the future development of biologics-based nanopharmaceuticals from a "high risk-high gain" perspective and within the context of personalized therapies. Integrated scientific, commercial, and societal aspects are addressed, and provocative combined realistic biotech, computational, and nanotech approaches for tailor-made engineering of nanopharmaceuticals are discussed.

[Incidence of Thrombophilia and Risk of Renal Vessel Thrombosis in Kidney Transplant Recipients]

Kidney transplantation is the optimal treatment of end stage kidney disease. The most common vascular complication in the early postoperative period is thrombosis of the renal artery and vein. These complications usually lead to the loss of the transplanted kidney.

Fluorescent Penetration Enhancers for Transdermal Applications

Chemical penetration enhancers are often used to enhance transdermal drug delivery. However, the fundamental mechanisms that govern the interactions between penetration enhancers and skin are not fully understood. Therefore, the goal of this work was to identify naturally fluorescent penetration enhancers (FPEs) in order to utilize well-established fluorescence techniques to directly study the behavior of FPEs within skin. In this study, 12 fluorescent molecules with amphiphilic characteristics were evaluated as skin penetration enhancers. Eight of the molecules exhibited significant activity as skin penetration enhancers, determined using skin current enhancement ratios. In addition, to illustrate the novel, direct, and non-invasive visualization of the behavior of FPEs within skin, three case studies involving the use of two-photon fluorescence microscopy (TPM) are presented, including visualizing glycerol-mitigated and ultrasound-enhanced FPE skin penetration. Previous TPM studies have indirectly visualized the effect of penetration enhancers on the skin by using a fluorescent dye to probe the transdermal pathways of the enhancer. These effects can now be directly visualized and investigated using FPEs. Finally, future studies are proposed for generating FPE design principles. The combination of FPEs with fluorescence techniques represents a useful novel approach for obtaining physical insights on the behavior of penetration enhancers within the skin.

Surface-engineered Substrates for Improved Human Pluripotent Stem Cell Culture Under Fully Defined Conditions

The current gold standard for the culture of human pluripotent stem cells requires the use of a feeder layer of cells. Here, we develop a spatially defined culture system based on UV/ozone radiation modification of typical cell culture plastics to define a favorable surface environment for human pluripotent stem cell culture. Chemical and geometrical optimization of the surfaces enables control of early cell aggregation from fully dissociated cells, as predicted from a numerical model of cell migration, and results in significant increases in cell growth of undifferentiated cells. These chemically defined xeno-free substrates generate more than three times the number of cells than feeder-containing substrates per surface area. Further, reprogramming and typical gene-targeting protocols can be readily performed on these engineered surfaces. These substrates provide an attractive cell culture platform for the production of clinically relevant factor-free reprogrammed cells from patient tissue samples and facilitate the definition of standardized scale-up friendly methods for disease modeling and cell therapeutic applications.

In Vivo Prevention of Arterial Restenosis with Paclitaxel-encapsulated Targeted Lipid-polymeric Nanoparticles

Following recent successes with percutaneous coronary intervention (PCI) for treating coronary artery disease (CAD), many challenges remain. In particular, mechanical injury from the procedure results in extensive endothelial denudation, exposing the underlying collagen IV-rich basal lamina, which promotes both intravascular thrombosis and smooth muscle proliferation. Previously, we reported the engineering of collagen IV-targeting nanoparticles (NPs) and demonstrated their preferential localization to sites of arterial injury. Here, we develop a systemically administered, targeted NP system to deliver an antiproliferative agent to injured vasculature. Approximately 60-nm lipid-polymeric NPs were surface functionalized with collagen IV-targeting peptides and loaded with paclitaxel. In safety studies, the targeted NPs showed no signs of toxicity and a ≥3.5-fold improved maximum tolerated dose versus paclitaxel. In efficacy studies using a rat carotid injury model, paclitaxel (0.3 mg/kg or 1 mg/kg) was i.v. administered postprocedure on days 0 and 5. The targeted NP group resulted in lower neointima-to-media (N/M) scores at 2 wk versus control groups of saline, paclitaxel, or nontargeted NPs. Compared with sham-injury groups, an ∼50% reduction in arterial stenosis was observed with targeted NP treatment. The combination of improved tolerability, sustained release, and vascular targeting could potentially provide a safe and efficacious option in the management of CAD.

A Physical Mechanism to Explain the Delivery of Chemical Penetration Enhancers into Skin During Transdermal Sonophoresis - Insight into the Observed Synergism

The synergism between low-frequency sonophoresis (LFS) and chemical penetration enhancers (CPEs), especially surfactants, in transdermal enhancement has been investigated extensively since this phenomenon was first observed over a decade ago. In spite of the identifying that the origin of this synergism is the increased penetration and subsequent dispersion of CPEs in the skin in response to LFS treatment, to date, no mechanism has been directly proposed to explain how LFS induces the observed increased transport of CPEs. In this study, we propose a plausible physical mechanism by which the transport of all CPEs is expected to have significantly increased flux into the localized-transport regions (LTRs) of LFS-treated skin. Specifically, the collapse of acoustic cavitation microjets within LTRs induces a convective flux. In addition, because amphiphilic molecules preferentially adsorb onto the gas/water interface of cavitation bubbles, amphiphiles have an additional adsorptive flux. In this sense, the cavitation bubbles effectively act as carriers for amphiphilic molecules, delivering surfactants directly into the skin when they collapse at the skin surface as cavitation microjets. The flux equations derived for CPE delivery into the LTRs and non-LTRs during LFS treatment, compared to that for untreated skin, explain why the transport of all CPEs, and to an even greater extent amphiphilic CPEs, is increased during LFS treatment. The flux model is tested with a non-amphiphilic CPE (propylene glycol) and both nonionic and ionic amphiphilic CPEs (octyl glucoside and sodium lauryl sulfate, respectively), by measuring the flux of each CPE into untreated skin and the LTRs and non-LTRs of LFS-treated skin. The resulting data shows very good agreement with the proposed flux model.

Roma Ethnicity and Clinical Outcomes in Kidney Transplant Recipients

BACKGROUND: Racial and ethnic disparities among North American patients with chronic kidney disease have received significant attention. In contrast, little is known about health-related outcomes of patients with end-stage renal disease among the Roma minority, also known as gypsies, compared to Caucasian individuals. We prospectively assessed the association between Roma ethnicity and long-term clinical outcomes in kidney transplant recipients. METHODS: In a prevalent cohort of renal transplant recipients, followed up over a median of 94 months, we prospectively collected socio-demographic, medical (and transplant related) characteristics and laboratory data at baseline from 60 Roma and 1,003 Caucasian patients (mean age 45 (SD = 11) and 49 (SD = 13) years, 33 and 41% women, 18 and 17% with diabetes mellitus, respectively). Survival analyses examined the associations between Roma ethnicity and all-cause mortality and death-censored graft loss or death with functioning renal allograft. RESULTS: During the follow-up period, 341 patients (32%) died. Two-hundred eighty (26%) patients died with a functioning graft and 201 patients (19%) returned to dialysis. After multivariable adjustments, Roma ethnicity was associated with 77% higher risk of all-cause mortality (Hazard Ratio (HR): 1.77; 95% confidence interval (CI): 1.02, 3.07), two times higher risk of mortality with functioning graft (2.04 [1.17-3.55]) and 77% higher risk of graft loss (1.77 [1.01-3.13]), respectively. CONCLUSIONS: Roma ethnicity is independently associated with increased mortality risk and worse graft outcome in kidney transplant recipients. Further studies should identify the factors contributing to worse outcomes among Roma patients.

Forty-year Journey of Angiogenesis Translational Research

Forty years ago, Judah Folkman predicted that tumor growth is dependent on angiogenesis and that inhibiting this process might be a new strategy for cancer therapy. This hypothesis formed the foundation of a new field of research that represents an excellent example of how a groundbreaking scientific discovery can be translated to yield benefits for patients. Today, antiangiogenic drugs are used to treat human cancers and retinal vascular diseases. Here, we guide readers through 40 years of angiogenesis research and discuss challenges of antiangiogenic therapy.

Functional Multipotency of Stem Cells: a Conceptual Review of Neurotrophic Factor-based Evidence and Its Role in Translational Research

We here propose an updated concept of stem cells (SCs), with an emphasis on neural stem cells (NSCs). The conventional view, which has touched principally on the essential property of lineage multipotency (e.g., the ability of NSCs to differentiate into all neural cells), should be broadened to include the emerging recognition of biofunctional multipotency of SCs to mediate systemic homeostasis, evidenced in NSCs in particular by the secretion of neurotrophic factors. Under this new conceptual context and taking the NSC as a leading example, one may begin to appreciate and seek the "logic" behind the wide range of molecular tactics the NSC appears to serve at successive developmental stages as it integrates into and prepares, modifies, and guides the surrounding CNS micro- and macro-environment towards the formation and self-maintenance of a functioning adult nervous system. We suggest that embracing this view of the "multipotency" of the SCs is pivotal for correctly, efficiently, and optimally exploiting stem cell biology for therapeutic applications, including reconstitution of a dysfunctional CNS.

Thermoresponsive Platforms for Tissue Engineering and Regenerative Medicine

Nanoparticle Delivery of Cancer Drugs

Nanomedicine, the application of nanotechnology to medicine, enabled the development of nanoparticle therapeutic carriers. These drug carriers are passively targeted to tumors through the enhanced permeability and retention effect, so they are ideally suited for the delivery of chemotherapeutics in cancer treatment. Indeed, advances in nanomedicine have rapidly translated into clinical practice. To date, there are five clinically approved nanoparticle chemotherapeutics for cancer and many more under clinical investigation. In this review, we discuss the various nanoparticle drug delivery platforms and the important concepts involved in nanoparticle drug delivery. We also review the clinical data on the approved nanoparticle therapeutics as well as the nanotherapeutics under clinical investigation.

Role of Organ Transplantation in the Treatment of Malignancies: Hepatocellular Carcinoma As the Most Common Tumour Treated with Transplantation

There are only few malignant tumours where organ transplantation is the treatment of choice. Transplantation can be considered individually in certain lung carcinomas, unresectable heart tumours, cholangiocellular carcinoma and Klatskin tumour. It is acceptable in unresectable chemosensitive hepatoblastoma, epitheloid haemangioendothelioma, liver metastasis of neuroendocrine tumours and as the most common indication, the early hepatocellular carcinoma (HCC) in cirrhotic liver. Results of liver transplantation (LT) for HCC according to Milan criteria as a "gold standard" are excellent. Time of LT has a great influence on the results. While patients are on waiting list, locoregional therapies may help prevent tumour progress. Living donor LT is an acceptable treatment of HCC. The greatest experience with this procedure is in Asia. Despite the favourable results, LT as the treatment of HCC is debated and raises several questions: regarding indication and expectable outcome. Milan criteria seem to answer this questions although they are too strict. The number and size of HCC foci per se is not sufficient predictor of eligibility to transplantation and for prognosis. Majority of the prognostic factors can be evaluated only after transplantation with pathological examination of HCC. Aim of the present research is to find prognostic factors that are characteristic of biological behaviour of HCC, which can be detected before LT in order to select patients who have the greatest benefit from LT. Re-definition of eligibility criteria is an actual question; an international consensus based on additional prospective studies is required for the "new" recommendation.

Combinatorial Library of Lipidoids for in Vitro DNA Delivery

A combinatorial library of lipidoids was constructed and studied for in vitro gene delivery. The library of lipidoids was synthesized by reacting commercially available amines with lipophilic acrylates, acrylamides, or epoxides. Lipidoids derived from amine 86 (N,N-bis(2-hydroxyethyl)ethylene diamine) and amine 87 (N-(3-aminopropyl)diethaneamine) showed high efficiency in DNA delivery, some with a higher transfection efficiency than Lipofectamine 2000, a commonly used commercial gold standard for in vitro gene delivery. The structure-activity relationship between the lipidoids was further studied with respect to small variations in chemical structures and the resulting efficiency in DNA delivery in vitro. Since these lipidoids are easy to synthesize and do not require a colipid for efficient DNA delivery, they could offer an inexpensive but effective alternative to other commonly used commercial gene delivery carriers.

Treating Metastatic Cancer with Nanotechnology

Metastasis accounts for the vast majority of cancer deaths. The unique challenges for treating metastases include their small size, high multiplicity and dispersion to diverse organ environments. Nanoparticles have many potential benefits for diagnosing and treating metastatic cancer, including the ability to transport complex molecular cargoes to the major sites of metastasis, such as the lungs, liver and lymph nodes, as well as targeting to specific cell populations within these organs. This Review highlights the research, opportunities and challenges for integrating engineering sciences with cancer biology and medicine to develop nanotechnology-based tools for treating metastatic disease.

Recent Developments in Multifunctional Hybrid Nanoparticles: Opportunities and Challenges in Cancer Therapy

Multifunctional hybrid nanoparticles combine some of the unique physical and chemical characteristics of two or more classes of materials, such as polymers, liposomes, metals, quantum dots and mesoporous silica among others, to create a versatile and robust new class of nanoparticles. Here we discuss the most recent synthetic strategies to create these hybrid systems and analyze four key design aspects: stability, encapsulation of therapeutic and imaging agents, controlled release of encapsulated agents, and biocompatibility. Through the combination of multiple nanomaterials, hybrid nanoparticles aim to expand the functionality of single-component systems, using the strengths of one material to improve on weaknesses of another. We then examine how hybrid nanoparticle platforms provide unique opportunities in cancer therapy, specifically in the treatment of multidrug resistant cancer. Finally, we discuss some of the challenges hybrid nanoparticles systems might face in their large scale synthesis and commercialization in the biopharmaceutical industry.

Engineering of Targeted Nanoparticles for Cancer Therapy Using Internalizing Aptamers Isolated by Cell-uptake Selection

One of the major challenges in the development of targeted nanoparticles (NPs) for cancer therapy is to discover targeting ligands that allow for differential binding and uptake by the target cancer cells. Using prostate cancer (PCa) as a model disease, we developed a cell-uptake selection strategy to isolate PCa-specific internalizing 2'-O-methyl RNA aptamers (Apts) for NP incorporation. Twelve cycles of selection and counter-selection were done to obtain a panel of internalizing Apts, which can distinguish PCa cells from nonprostate and normal prostate cells. After Apt characterization, size minimization, and conjugation of the Apts with fluorescently labeled polymeric NPs, the NP-Apt conjugates exhibit PCa specificity and enhancement in cellular uptake when compared to nontargeted NPs lacking the internalizing Apts. Furthermore, when docetaxel, a chemotherapeutic agent used for the treatment of PCa, was encapsulated within the NP-Apt, a significant improvement in cytotoxicity was achieved in targeted PCa cells. Rather than isolating high-affinity Apts as reported in previous selection processes, our selection strategy was designed to enrich cancer cell-specific internalizing Apts. A similar cell-uptake selection strategy may be used to develop specific internalizing ligands for a myriad of other diseases and can potentially facilitate delivering various molecules, including drugs and siRNAs, into target cells.

Progress in the Tissue Engineering and Stem Cell Industry "Are We There Yet?"

This report presents a detailed update to our 2008 publication on the tissue engineering (TE) and stem cell industry. Data are reported through mid 2011 showing an almost three-fold growth in commercial sales over the past 4 years. In addition, the number of companies selling products or offering services has increased over two-fold to 106, and they are generating a remarkable $3.5 billion in sales. Overall, the TE and stem cell sector is spending $3.6 billion and employing almost 14,000 employees. These data suggest the TE and stem cell industry has stabilized and is on a path pointing toward continued success.

Superstructure Based on β-CD Self-assembly Induced by a Small Guest Molecule

The size, shape and surface chemistry of nanoparticles play an important role in cellular interaction. Thus, the main objective of the present study was the determination of the β-cyclodextrin (β-CD) self-assembly thermodynamic parameters and its structure, aiming to use these assemblies as a possible controlled drug release system. Light scattering measurements led us to obtain the β-CD's critical aggregation concentration (cac) values, and consequently the thermodynamic parameters of the β-CD spontaneous self-assembly in aqueous solution: Δ(agg)G(o) = - 16.31 kJ mol(-1), Δ(agg)H(o) = - 26.48 kJ mol(-1) and TΔ(agg)S(o) = - 10.53 kJ mol(-1) at 298.15 K. Size distribution of the self-assembled nanoparticles below and above cac was 1.5 nm and 60-120 nm, respectively. The number of β-CD molecules per cluster and the second virial coefficient were identified through Debye's plot and molecular dynamic simulations proposed the three-fold assembly for this system below cac. Ampicillin (AMP) was used as a drug model in order to investigate the key role of the guest molecule in the self-assembly process and the β-CD:AMP supramolecular system was studied in solution, aiming to determine the structure of the supramolecular aggregate. Results obtained in solution indicated that the β-CD's cac was not affected by adding AMP. Moreover, different complex stoichiometries were identified by nuclear magnetic resonance and isothermal titration calorimetry experiments.

The Effect of Steroid Pretreatment of Deceased Organ Donors on Liver Allograft Function: A Blinded Randomized Placebo Controlled Trial

BACKGROUND: Brain death associated inflammatory response contributes to increased risk of impaired early liver allograft function, which might be counter balanced by steroid pre-treatment of the organ donor. AIM: The aim of this randomized controlled trial was to elucidate whether steroid pretreatment of liver donors improves early liver allograft function and prevents rejection and prolongs survival. METHODS: A placebo-controlled blinded randomized clinical trial was performed in three different centers in Austria and Hungary between 2006 and 2008. Ninety deceased organ donors received either 1000mg of methylprednisolone or placebo six hours before recovery of organs. The primary endpoint was the concentration slope of transaminases within the first week. The secondary end point included survival and biopsy confirmed acute rejection (BCAR) within three years after transplantation. RESULTS: Of the 90 randomized donors 83 recipients were eligible for study. The trajectories of ALT and AST were not different between treatments (p=0.40 and p=0.13 respectively). Eight subjects died in the steroid and thirteen in the placebo group within three years after engraftment (RR=0.63 95%CI [0.29, 1.36], p=0.31). Eleven recipients experienced BCAR in the steroid and 11 in the placebo group (RR=1.02 95%CI [0.50, 2.10], p=1.00). No effect modification could be identified in the predefined strata of donor age, sex, cold ischemic time, and cause of donor death. CONCLUSION: Steroid pre-treatment of organ donors did not improve outcomes after liver transplantation. (controlled-trials.com number ISRCTN78828338).

Toxicogenomic Analysis of a Sustained Release Local Anesthetic Delivery System

Concerns over neurotoxicity have impeded the development of sustained release formulations providing prolonged duration local anesthesia (PDLA) from a single injection, for which there is an urgent clinical need. Here, we have used toxicogenomics to investigate whether nerve injury occurred during week-long continuous sciatic nerve blockade by microspheres containing bupivacaine, tetrodotoxin, and dexamethasone (TBD). Animals treated with amitriptyline solution (our positive control for local anesthetic-associated nerve injury) developed irreversible nerve blockade, had severely abnormal nerve histology, and the expression of hundreds of genes was altered in the dorsal root ganglia at 4 and 7 days after injection. In marked contrast, TBD-treated nerves reverted to normal function, were normal histologically and there were changes in the expression of a small number of genes. Toxicogenomic studies have great potential in delineating patterns of gene expression associated with specific patterns of tissue injury (e.g. amitriptyline neurotoxicity), and in identifying related changes in gene expression upon exposure to a drug, biomaterial, or drug delivery system.

Effect of Molecular Weight of Amine End-modified Poly(β-amino Ester)s on Gene Delivery Efficiency and Toxicity

Amine end-modified poly(β-amino ester)s (PBAEs) have generated interest as efficient, biodegradable polymeric carriers for plasmid DNA (pDNA). For cationic, non-degradable polymers, such as polyethylenimine (PEI), the polymer molecular weight (MW) and molecular weight distribution (MWD) significantly affect transfection activity and cytotoxicity. The effect of MW on DNA transfection activity for PBAEs has been less well studied. We applied two strategies to obtain amine end-modified PBAEs varying in MW. In one approach, we synthesized four amine end-modified PBAEs with each at 15 different monomer molar ratios, and observed that polymers of intermediate length mediated optimal DNA transfection in HeLa cells. Biophysical characterization of these feed ratio variants suggested that optimal performance was related to higher DNA complexation efficiency and smaller nanoparticle size, but not to nanoparticle charge. In a second approach, we used preparative size exclusion chromatography (SEC) to obtain well-defined, monodisperse polymer fractions. We observed that the transfection activities of size-fractionated PBAEs generally increased with MW, a trend that was weakly associated with an increase in DNA binding efficiency. Furthermore, this approach allowed for the isolation of polymer fractions with greater transfection potency than the starting material. For researchers working with gene delivery polymers synthesized by step-growth polymerization, our data highlight the potentially broad utility of preparative SEC to isolate monodisperse polymers with improved properties. Overall, these results help to elucidate the influence of polymer MWD on nucleic acid delivery and provide insight toward the rational design of next-generation materials for gene therapy.

First-in-human Testing of a Wirelessly Controlled Drug Delivery Microchip

The first clinical trial of an implantable microchip-based drug delivery device is discussed. Human parathyroid hormone fragment (1-34) [hPTH(1-34)] was delivered from the device in vivo. hPTH(1-34) is the only approved anabolic osteoporosis treatment, but requires daily injections, making patient compliance an obstacle to effective treatment. Furthermore, a net increase in bone mineral density requires intermittent or pulsatile hPTH(1-34) delivery, a challenge for implantable drug delivery products. The microchip-based devices, containing discrete doses of lyophilized hPTH(1-34), were implanted in eight osteoporotic postmenopausal women for 4 months and wirelessly programmed to release doses from the device once daily for up to 20 days. A computer-based programmer, operating in the Medical Implant Communications Service band, established a bidirectional wireless communication link with the implant to program the dosing schedule and receive implant status confirming proper operation. Each woman subsequently received hPTH(1-34) injections in escalating doses. The pharmacokinetics, safety, tolerability, and bioequivalence of hPTH(1-34) were assessed. Device dosing produced similar pharmacokinetics to multiple injections and had lower coefficients of variation. Bone marker evaluation indicated that daily release from the device increased bone formation. There were no toxic or adverse events due to the device or drug, and patients stated that the implant did not affect quality of life.

Hypnotics' Association with Mortality or Cancer: a Matched Cohort Study

An estimated 6%-10% of US adults took a hypnotic drug for poor sleep in 2010. This study extends previous reports associating hypnotics with excess mortality.

Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery

We report a novel nanoparticulate drug delivery system that undergoes reversible volume change from 150 to 40 nm upon phototriggering with UV light. The volume change of these monodisperse nanoparticles comprising spiropyran, which undergoes reversible photoisomerization, and PEGylated lipid enables repetitive dosing from a single administration and enhances tissue penetration. The photoswitching allows particles to fluoresce and release drugs inside cells when illuminated with UV light. The mechanism of the light-induced size switching and triggered-release is studied. These particles provide spatiotemporal control of drug release and enhanced tissue penetration, useful properties in many disease states including cancer.

Lipid-derived Nanoparticles for Immunostimulatory RNA Adjuvant Delivery

The specific activation of Toll-like receptors (TLRs) has potential utility for a variety of therapeutic indications including antiviral immunotherapy and as vaccine adjuvants. TLR7 and TLR 8 may be activated by their native ligands, single-stranded RNA, or by small molecules of the imidazoquinoline family. However the use of TLR7/8 agonists for in vivo therapy is limited by instability, in the case of RNA, or systemic biodistribution and toxicity in the case of small molecule agonists. We hypothesized that unique lipid-like materials, termed "lipidoids," could be designed to efficiently deliver immunostimulatory RNA (isRNA) to TLR-expressing cells to drive innate and adaptive immune responses. A library of lipidoids was synthesized and screened for the ability to induce type I IFN activation in human peripheral blood mononuclear cells when combined with isRNA oligonucleotides. Effective lipidoid-isRNA nanoparticles, when tested in mice, stimulated strong IFN-α responses following subcutaneous injection, had robust antiviral activity that suppressed influenza virus replication, and enhanced antiovalbumin humoral and cell-mediated responses when used as a vaccine adjuvant. Further, we demonstrate that whereas all immunological activity was MyD88-dependent, certain materials were found to engage both TLR7-dependent and TLR7-independent activity in the mouse suggestive of cell-specific delivery. These lipidoid formulations, which are materials designed specifically for delivery of isRNA to Toll-like receptors, were superior to the commonly used N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium methylsulfate-RNA delivery system and may provide new tools for the manipulation of TLR responses in vitro and in vivo.

Remotely Activated Protein-producing Nanoparticles

The development of responsive nanomaterials, nanoscale systems that actively respond to stimuli, is one general goal of nanotechnology. Here we develop nanoparticles that can be controllably triggered to synthesize proteins. The nanoparticles consist of lipid vesicles filled with the cellular machinery responsible for transcription and translation, including amino acids, ribosomes, and DNA caged with a photolabile protecting group. These particles served as nanofactories capable of producing proteins including green fluorescent protein (GFP) and enzymatically active luciferase. In vitro and in vivo, protein synthesis was spatially and temporally controllable, and could be initiated by irradiating micrometer-scale regions on the time scale of milliseconds. The ability to control protein synthesis inside nanomaterials may enable new strategies to facilitate the study of orthogonal proteins in a confined environment and for remotely activated drug delivery.

Therapeutic Angiogenesis Using Genetically Engineered Human Endothelial Cells

Cell therapy holds promise as a method for the treatment of ischemic disease. However, one significant challenge to the efficacy of cell therapy is poor cell survival in vivo. Here we describe a non-viral, gene therapy approach to improve the survival and engraftment of cells transplanted into ischemic tissue. We have developed biodegradable poly(β-amino esters) (PBAE) nanoparticles as vehicles to genetically modify human umbilical vein endothelial cells (HUVECs) with vascular endothelial growth factor (VEGF). VEGF transfection using these nanoparticles significantly enhanced VEGF expression in HUVECs, compared with a commercially-available transfection reagent. Transfection resulted in the upregulation of survival factors, and improved viability under simulated ischemic conditions. In a mouse model of hindlimb ischemia, VEGF nanoparticle transfection promoted engraftment of HUVECs into mouse vasculature as well as survival of transplanted HUVECs in ischemic tissues, leading to improved angiogenesis and ischemic limb salvage. This study demonstrates that biodegradable polymer nanoparticles may provide a safe and effective method for genetic engineering of endothelial cells to enhance therapeutic angiogenesis.

Reservoir-based Drug Delivery Systems Utilizing Microtechnology

This review covers reservoir-based drug delivery systems that incorporate microtechnology, with an emphasis on oral, dermal, and implantable systems. Key features of each technology are highlighted such as working principles, fabrication methods, dimensional constraints, and performance criteria. Reservoir-based systems include a subset of microfabricated drug delivery systems and provide unique advantages. Reservoirs, whether external to the body or implanted, provide a well-controlled environment for a drug formulation, allowing increased drug stability and prolonged delivery times. Reservoir systems have the flexibility to accommodate various delivery schemes, including zero order, pulsatile, and on demand dosing, as opposed to a standard sustained release profile. Furthermore, the development of reservoir-based systems for targeted delivery for difficult to treat applications (e.g., ocular) has resulted in potential platforms for patient therapy.

Everolimus Plus Early Tacrolimus Minimization: a Phase III, Randomized, Open-label, Multicentre Trial in Renal Transplantation

There is increasing interest in tacrolimus-minimization regimens. ASSET was an open-label, randomized, 12-month study of everolimus plus tacrolimus in de-novo renal-transplant recipients. Everolimus trough targets were 3-8 ng/ml throughout the study. Tacrolimus trough targets were 4-7 ng/ml during the first 3 months and 1.5-3 ng/ml (n = 107) or 4-7 ng/ml (n = 117) from Month 4. All patients received basiliximab induction and corticosteroids. The primary objective was to demonstrate superior estimated glomerular filtration rate (eGFR; MDRD-4) at Month 12 in the tacrolimus 1.5-3 ng/ml versus the 4-7 ng/ml group. Secondary endpoints included incidence of biopsy-proven acute rejection (BPAR; Months 4-12) and serious adverse events (SAEs; Months 0-12). Statistical significance was not achieved for the primary endpoint (mean eGFR: 57.1 vs. 51.7 ml/min/1.73 m(2)), potentially due to overlapping of achieved tacrolimus exposure levels (Month 12 mean ± SD, tacrolimus 1.5-3 ng/ml: 3.4 ± 1.4; tacrolimus 4-7 ng/ml: 5.5 ± 2.0 ng/ml). BPAR (months 4-12) and SAE rates were comparable between groups (2.7% vs. 1.1% and 58.7% vs. 51.3%; respectively). Everolimus-facilitated tacrolimus minimization, to levels lower than previously investigated, achieved good renal function, low BPAR and graft-loss rates, and an acceptable safety profile in renal transplantation over 12 months although statistically superior renal function of the 1.5-3 ng/ml tacrolimus group was not achieved.

Surface Charge-switching Polymeric Nanoparticles for Bacterial Cell Wall-targeted Delivery of Antibiotics

Bacteria have shown a remarkable ability to overcome drug therapy if there is a failure to achieve sustained bactericidal concentration or if there is a reduction in activity in situ. The latter can be caused by localized acidity, a phenomenon that can occur as a result of the combined actions of bacterial metabolism and the host immune response. Nanoparticles (NP) have shown promise in treating bacterial infections, but a significant challenge has been to develop antibacterial NPs that may be suitable for systemic administration. Herein we develop drug-encapsulated, pH-responsive, surface charge-switching poly(D,L-lactic-co-glycolic acid)-b-poly(L-histidine)-b-poly(ethylene glycol) (PLGA-PLH-PEG) nanoparticles for treating bacterial infections. These NP drug carriers are designed to shield nontarget interactions at pH 7.4 but bind avidly to bacteria in acidity, delivering drugs and mitigating in part the loss of drug activity with declining pH. The mechanism involves pH-sensitive NP surface charge switching, which is achieved by selective protonation of the imidazole groups of PLH at low pH. NP binding studies demonstrate pH-sensitive NP binding to bacteria with a 3.5 ± 0.2- to 5.8 ± 0.1-fold increase in binding to bacteria at pH 6.0 compared to 7.4. Further, PLGA-PLH-PEG-encapsulated vancomycin demonstrates reduced loss of efficacy at low pH, with an increase in minimum inhibitory concentration of 1.3-fold as compared to 2.0-fold and 2.3-fold for free and PLGA-PEG-encapsulated vancomycin, respectively. The PLGA-PLH-PEG NPs described herein are a first step toward developing systemically administered drug carriers that can target and potentially treat Gram-positive, Gram-negative, or polymicrobial infections associated with acidity.

Therapeutic Effect of Orally Administered Microencapsulated Oxaliplatin for Colorectal Cancer

Colorectal cancer is a significant source of morbidity and mortality in the United States and other Western countries. Oral delivery of therapeutics remains the most patient accepted form of medication. The development of an oral delivery formulation for local delivery of chemotherapeutics in the gastrointestinal tract can potentially alleviate the adverse side effects including systemic cytotoxicity, as well as focus therapy to the lesions. Here we develop an oral formulation of the chemotherapeutic drug oxaliplatin for the treatment of colorectal cancer. Oxaliplatin was encapsulated in pH sensitive, mucoadhesive chitosan-coated alginate microspheres. The microparticles were formulated to release the chemotherapeutics after passing through the acidic gastric environment thus targeting the intestinal tract. In vivo, these particles substantially reduced the tumor burden in an orthotopic mouse model of colorectal cancer, and reduced mortality.

Preclinical Development and Clinical Translation of a PSMA-targeted Docetaxel Nanoparticle with a Differentiated Pharmacological Profile

We describe the development and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors. DTXL-TNP is targeted to prostate-specific membrane antigen, a clinically validated tumor antigen expressed on prostate cancer cells and on the neovasculature of most nonprostate solid tumors. DTXL-TNP was developed from a combinatorial library of more than 100 TNP formulations varying with respect to particle size, targeting ligand density, surface hydrophilicity, drug loading, and drug release properties. Pharmacokinetic and tissue distribution studies in rats showed that the NPs had a blood circulation half-life of about 20 hours and minimal liver accumulation. In tumor-bearing mice, DTXL-TNP exhibited markedly enhanced tumor accumulation at 12 hours and prolonged tumor growth suppression compared to a solvent-based DTXL formulation (sb-DTXL). In tumor-bearing mice, rats, and nonhuman primates, DTXL-TNP displayed pharmacokinetic characteristics consistent with prolonged circulation of NPs in the vascular compartment and controlled release of DTXL, with total DTXL plasma concentrations remaining at least 100-fold higher than sb-DTXL for more than 24 hours. Finally, initial clinical data in patients with advanced solid tumors indicated that DTXL-TNP displays a pharmacological profile differentiated from sb-DTXL, including pharmacokinetics characteristics consistent with preclinical data and cases of tumor shrinkage at doses below the sb-DTXL dose typically used in the clinic.

Stem Cell Membrane Engineering for Cell Rolling Using Peptide Conjugation and Tuning of Cell-selectin Interaction Kinetics

Dynamic cell-microenvironment interactions regulate many biological events and play a critical role in tissue regeneration. Cell homing to targeted tissues requires well balanced interactions between cells and adhesion molecules on blood vessel walls. However, many stem cells lack affinity with adhesion molecules. It is challenging and clinically important to engineer these stem cells to modulate their dynamic interactions with blood vessels. In this study, a new chemical strategy was developed to engineer cell-microenvironment interactions. This method allowed the conjugation of peptides onto stem cell membranes without affecting cell viability, proliferation or multipotency. Mesenchymal stem cells (MSCs) engineered in this manner showed controlled firm adhesion and rolling on E-selectin under physiological shear stresses. For the first time, these biomechanical responses were achieved by tuning the binding kinetics of the peptide-selectin interaction. Rolling of engineered MSCs on E-selectin is mediated by a Ca(2+) independent interaction, a mechanism that differs from the Ca(2+) dependent physiological process. This further illustrates the ability of this approach to manipulate cell-microenvironment interactions, in particular for the application of delivering cells to targeted tissues. It also provides a new platform to engineer cells with multiple functionalities.

Iron Borohydride Pincer Complexes for the Efficient Hydrogenation of Ketones Under Mild, Base-free Conditions: Synthesis and Mechanistic Insight

The new, structurally characterized hydrido carbonyl tetrahydridoborate iron pincer complex [(iPr-PNP)Fe(H)(CO)(η(1)-BH(4))] (1) catalyzes the base-free hydrogenation of ketones to their corresponding alcohols employing only 4.1 atm hydrogen pressure. Turnover numbers up to 1980 at complete conversion of ketone were reached with this system. Treatment of 1 with aniline (as a BH(3) scavenger) resulted in a mixture of trans-[(iPr-PNP)Fe(H)(2)(CO)] (4a) and cis-[(iPr-PNP)Fe(H)(2)(CO)] (4b). The dihydrido complexes 4a and 4b do not react with acetophenone or benzaldehyde, indicating that these complexes are not intermediates in the catalytic reduction of ketones. NMR studies indicate that the tetrahydridoborate ligand in 1 dissociates prior to ketone reduction. DFT calculations show that the mechanism of the iron-catalyzed hydrogenation of ketones involves alcohol-assisted aromatization of the dearomatized complex [(iPr-PNP*)Fe(H)(CO)] (7) to initially give the Fe(0) complex [(iPr-PNP)Fe(CO)] (21) and subsequently [(iPr-PNP)Fe(CO)(EtOH)] (38). Concerted coordination of acetophenone and dual hydrogen-atom transfer from the PNP arm and the coordinated ethanol to, respectively, the carbonyl carbon and oxygen atoms, leads to the dearomatized complex [(iPr-PNP*)Fe(CO)(EtO)(MeCH(OH)Ph)] (32). The catalyst is regenerated by release of 1-phenylethanol, followed by dihydrogen coordination and proton transfer to the coordinated ethoxide ligand.

Engineering of Lipid-coated PLGA Nanoparticles with a Tunable Payload of Diagnostically Active Nanocrystals for Medical Imaging

Polylactic-co-glycolic acid (PLGA) based nanoparticles are biocompatible and biodegradable and therefore have been extensively investigated as therapeutic carriers. Here, we engineered diagnostically active PLGA nanoparticles that incorporate high payloads of nanocrystals into their core for tunable bioimaging features. We accomplished this through esterification reactions of PLGA to generate polymers modified with nanocrystals. The PLGA nanoparticles formed from modified PLGA polymers that were functionalized with either gold nanocrystals or quantum dots exhibited favorable features for computed tomography and optical imaging, respectively.

Melanin-like Hydrogels Derived from Gallic Macromers

YY1 Regulates Melanocyte Development and Function by Cooperating with MITF

Studies of coat color mutants have greatly contributed to the discovery of genes that regulate melanocyte development and function. Here, we generated Yy1 conditional knockout mice in the melanocyte-lineage and observed profound melanocyte deficiency and premature gray hair, similar to the loss of melanocytes in human piebaldism and Waardenburg syndrome. Although YY1 is a ubiquitous transcription factor, YY1 interacts with M-MITF, the Waardenburg Syndrome IIA gene and a master transcriptional regulator of melanocytes. YY1 cooperates with M-MITF in regulating the expression of piebaldism gene KIT and multiple additional pigmentation genes. Moreover, ChIP-seq identified genome-wide YY1 targets in the melanocyte lineage. These studies mechanistically link genes implicated in human conditions of melanocyte deficiency and reveal how a ubiquitous factor (YY1) gains lineage-specific functions by co-regulating gene expression with a lineage-restricted factor (M-MITF)-a general mechanism which may confer tissue-specific gene expression in multiple lineages.

Intracranial MEMS Based Temozolomide Delivery in a 9L Rat Gliosarcoma Model

Primary malignant brain tumors (BT) are the most common and aggressive malignant brain tumor. Treatment of BTs is a daunting task with median survival just at 21 months. Methods of localized delivery have achieved success in treating BT by circumventing the blood brain barrier and achieving high concentrations of therapeutic within the tumor. The capabilities of localized delivery can be enhanced by utilizing mirco-electro-mechanical systems (MEMS) technology to deliver drugs with precise temporal control over release kinetics. An intracranial MEMS based device was developed to deliver the clinically utilized chemotherapeutic temozolomide (TMZ) in a rodent glioma model. The device is a liquid crystalline polymer reservoir, capped by a MEMS microchip. The microchip contains three nitride membranes that can be independently ruptured at any point during or after implantation. The kinetics of TMZ release were validated and quantified in vitro. The safety of implanting the device intracranially was confirmed with preliminary in vivo studies. The impact of TMZ release kinetics was investigated by conducting in vivo studies that compared the effects of drug release rates and timing on animal survival. TMZ delivered from the device was effective at prolonging animal survival in a 9L rodent glioma model. Immunohistological analysis confirmed that TMZ was released in a viable, cytotoxic form. The results from the in vivo efficacy studies indicate that early, rapid delivery of TMZ from the device results in the most prolonged animal survival. The ability to actively control the rate and timing of drug(s) release holds tremendous potential for the treatment of BTs and related diseases.

Molecularly Self-assembled Nucleic Acid Nanoparticles for Targeted in Vivo SiRNA Delivery

Nanoparticles are used for delivering therapeutics into cells. However, size, shape, surface chemistry and the presentation of targeting ligands on the surface of nanoparticles can affect circulation half-life and biodistribution, cell-specific internalization, excretion, toxicity and efficacy. A variety of materials have been explored for delivering small interfering RNAs (siRNAs)--a therapeutic agent that suppresses the expression of targeted genes. However, conventional delivery nanoparticles such as liposomes and polymeric systems are heterogeneous in size, composition and surface chemistry, and this can lead to suboptimal performance, a lack of tissue specificity and potential toxicity. Here, we show that self-assembled DNA tetrahedral nanoparticles with a well-defined size can deliver siRNAs into cells and silence target genes in tumours. Monodisperse nanoparticles are prepared through the self-assembly of complementary DNA strands. Because the DNA strands are easily programmable, the size of the nanoparticles and the spatial orientation and density of cancer-targeting ligands (such as peptides and folate) on the nanoparticle surface can be controlled precisely. We show that at least three folate molecules per nanoparticle are required for optimal delivery of the siRNAs into cells and, gene silencing occurs only when the ligands are in the appropriate spatial orientation. In vivo, these nanoparticles showed a longer blood circulation time (t(1/2) ≈ 24.2 min) than the parent siRNA (t(1/2) ≈ 6 min).

FRET-labeled SiRNA Probes for Tracking Assembly and Disassembly of SiRNA Nanocomplexes

The assembly, stability, and timely disassembly of short interfering RNA (siRNA) nanocomplexes have the potential to affect the efficiency of siRNA delivery and gene silencing. As such, the design of new probes that can measure these properties without significantly perturbing the nanocomplexes or their environment may facilitate the study and further development of new siRNA nanocomplexes. Herein, we study Förster resonance energy transfer (FRET)-labeled siRNA probes that can track the assembly, stability, and disassembly of siRNA nanocomplexes in different environments. The probe is composed of two identical siRNAs, each labeled with a fluorophore. Upon nanocomplex formation, the siRNA-bound fluorophores become locally aggregated within the nanocomplex and undergo FRET. A key advantage of this technique is that the delivery vehicle (DV) need not be labeled, thus enabling the characterization of a large variety of nanocarriers, some of which may be difficult or even impossible to label. We demonstrate proof-of-concept by measuring the assembly of various DVs with siRNAs and show good agreement with gel electrophoresis experiments. As a consequence of not having to label the DV, we are able to determine nanocomplex biophysical parameters such as the extracellular apparent dissociation constants (K(D)) and intracellular disassembly half-life for several in-house and proprietary commercial DVs. Furthermore, the lack of DV modification allows for a true direct comparison between DVs as well as correlation between their biophysical properties and gene silencing.

Fabrication of a Hybrid Microfluidic System Incorporating Both Lithographically Patterned Microchannels and a 3D Fiber-formed Microfluidic Network

A device containing a 3D microchannel network (fabricated using sacrificial melt-spun microfibers) sandwiched between lithographically patterned microfluidic channels offers improved delivery of soluble compounds to a large volume compared to a simple stack of two microfluidic channel layers. With this improved delivery ability comes an increased fluidic resistance due to the tortuous network of small-diameter channels.

Laparoscopic Donor Nephrectomy Techniques

To highlight the latest improvements and modifications aimed at better outcomes in laparoscopic live-donor nephrectomies.

Mass Production and Size Control of Lipid-polymer Hybrid Nanoparticles Through Controlled Microvortices

Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process but are restricted by a low throughput. In this study, we present a pattern-tunable microvortex platform that allows mass production and size control of LPH nanoparticles with superior reproducibility and homogeneity. We demonstrate that by varying flow rates (i.e., Reynolds number (30-150)) we can control the nanoparticle size (30-170 nm) with high productivity (∼3 g/hour) and low polydispersity (∼0.1). Our approach may contribute to efficient development and optimization of a wide range of multicomponent nanoparticles for medical imaging and drug delivery.

A 3D Interconnected Microchannel Network Formed in Gelatin by Sacrificial Shellac Microfibers

The Smartest Materials: the Future of Nanoelectronics in Medicine

Electronics have become central to many aspects of biomedicine, ranging from fundamental biophysical studies of excitable tissues to medical monitoring and electronic implants to restore limb movement. The development of new materials and approaches is needed to enable enhanced tissue integration, interrogation, and stimulation and other functionalities. Nanoscale materials offer many avenues for progress in this respect. New classes of molecular-scale bioelectronic interfaces can be constructed using either one-dimensional nanostructures, such as nanowires and nanotubes, or two-dimensional nanostructures, such as graphene. Nanodevices can create ultrasensitive sensors and can be designed with spatial resolution as fine as the subcellular regime. Structures on the nanoscale can enable the development of engineered tissues within which sensing elements are integrated as closely as the nervous system within native tissues. In addition, the close integration of nanomaterials with cells and tissues will also allow the development of in vitro platforms for basic research or diagnostics. Such lab-on-a-chip systems could, for example, enable testing of the effects of candidate therapeutic molecules on intercellular, single-cell, and even intracellular physiology. Finally, advances in nanoelectronics can lead to extremely sophisticated smart materials with multifunctional capabilities, enabling the spectrum of biomedical possibilities from diagnostic studies to the creation of cyborgs.

Combinatorial Discovery of Polymers Resistant to Bacterial Attachment

Bacterial attachment and subsequent biofilm formation pose key challenges to the optimal performance of medical devices. In this study, we determined the attachment of selected bacterial species to hundreds of polymeric materials in a high-throughput microarray format. Using this method, we identified a group of structurally related materials comprising ester and cyclic hydrocarbon moieties that substantially reduced the attachment of pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli). Coating silicone with these 'hit' materials achieved up to a 30-fold (96.7%) reduction in the surface area covered by bacteria compared with a commercial silver hydrogel coating in vitro, and the same material coatings were effective at reducing bacterial attachment in vivo in a mouse implant infection model. These polymers represent a class of materials that reduce the attachment of bacteria that could not have been predicted to have this property from the current understanding of bacteria-surface interactions.

[Recent Options in Drug Therapy After Solid Organ Transplantation]

Solid organ transplantation has shown improvement in patient and graft survival rates due to the development of immunosuppression in the last fifty years; however only the last two decades led to the development of new, baseline immunosuppressive drugs that avoid the unlikely side effects of calcineurin inhibitors, especially nephrotoxicity. The transplanted organ is foreign to the host and, therefore, it induces a complex immune response of the recipient. In this review, a brief outline of immune response is given, followed by the introduction of new immunosuppressive drugs acting via variant pathways. These are compounds which are already in use or becoming shortly available and are potential future alternatives for the calcineurin inhibitors. This paper highlights the role of co-stimulation blockade with belatacept and the recently even more intensively studied field of tolerance induction.

Do No Harm: Not Even to Some Degree

Localized Delivery of Dexamethasone from Electrospun Fibers Reduces the Foreign Body Response

Synthetic scaffolds are crucial to applications in regenerative medicine; however, the foreign body response can impede regeneration and may lead to failure of the implant. Herein we report the development of a tissue engineering scaffold that allows attachment and proliferation of regenerating cells while reducing the foreign body response by localized delivery of an anti-inflammatory agent. Electrospun fibers composed of poly(l-lactic) acid (PLLA) and poly(ε-caprolactone) (PCL) were prepared with and without the steroid anti-inflammatory drug, dexamethasone. Analysis of subcutaneous implants demonstrated that the PLLA fibers encapsulating dexamethasone evoked a less severe inflammatory response than the other fibers examined. They also displayed a controlled release of dexamethasone over a period of time conducive to tissue regeneration and allowed human mesenchymal stem cells to adhere to and proliferate on them in vitro. These observations demonstrate their potential as a building block for tissue engineering scaffolds.

Macroporous Nanowire Nanoelectronic Scaffolds for Synthetic Tissues

The development of three-dimensional (3D) synthetic biomaterials as structural and bioactive scaffolds is central to fields ranging from cellular biophysics to regenerative medicine. As of yet, these scaffolds cannot electrically probe the physicochemical and biological microenvironments throughout their 3D and macroporous interior, although this capability could have a marked impact in both electronics and biomaterials. Here, we address this challenge using macroporous, flexible and free-standing nanowire nanoelectronic scaffolds (nanoES), and their hybrids with synthetic or natural biomaterials. 3D macroporous nanoES mimic the structure of natural tissue scaffolds, and they were formed by self-organization of coplanar reticular networks with built-in strain and by manipulation of 2D mesh matrices. NanoES exhibited robust electronic properties and have been used alone or combined with other biomaterials as biocompatible extracellular scaffolds for 3D culture of neurons, cardiomyocytes and smooth muscle cells. Furthermore, we show the integrated sensory capability of the nanoES by real-time monitoring of the local electrical activity within 3D nanoES/cardiomyocyte constructs, the response of 3D-nanoES-based neural and cardiac tissue models to drugs, and distinct pH changes inside and outside tubular vascular smooth muscle constructs.

Nanocomposite Gold-silk Nanofibers

Cell-biomaterial interactions can be controlled by modifying the surface chemistry or nanotopography of the material, to induce cell proliferation and differentiation if desired. Here we combine both approaches in forming silk nanofibers (SNFs) containing gold nanoparticles (AuNPs) and subsequently chemically modifying the fibers. Silk fibroin mixed with gold seed nanoparticles was electrospun to form SNFs doped with gold seed nanoparticles (SNF(seed)). Following gold reduction, there was a 2-fold increase in particle diameter confirmed by the appearance of a strong absorption peak at 525 nm. AuNPs were dispersed throughout the AuNP-doped silk nanofibers (SNFs(Au)). The Young's modulus of the SNFs(Au) was almost 70% higher than that of SNFs. SNFs(Au) were modified with the arginine-glycine-aspartic acid (RGD) peptide. Human mesenchymal stem cells that were cultured on RGD-modified SNF(Au) had a more than 2-fold larger cell area compared to the cells cultured on bare SNFs; SNF(Au) also increased cell size. This approach may be used to alter the cell-material interface in tissue engineering and other applications.

Rapid Skin Permeabilization by the Simultaneous Application of Dual-frequency, High-intensity Ultrasound

Low-frequency ultrasound has been studied extensively due to its ability to enhance skin permeability. In spite of this effort, improvements in enhancing the efficacy of transdermal ultrasound treatments have been limited. Currently, when greater skin permeability is desired at a given frequency, one is limited to increasing the intensity or the duration of the ultrasound treatment, which carries the risk of thermal side effects. Therefore, the ability to increase skin permeability without increasing ultrasound intensity or treatment time would represent a significant and desirable outcome. Here, we hypothesize that the simultaneous application of two distinct ultrasound frequencies, in the range of 20 kHz to 3 MHz, can enhance the efficacy of ultrasound exposure. Aluminum foil pitting experiments showed a significant increase in cavitational activity when two frequencies were applied instead of just one low frequency. Additionally, in vitro tests with porcine skin indicated that the permeability and resulting formation of localized transport regions are greatly enhanced when two frequencies (low and high) are used simultaneously. These results were corroborated with glucose (180 Da) and inulin (5000 Da) transdermal flux experiments, which showed greater permeant delivery both into and through the dual-frequency pre-treated skin.

Controlling Spatial Organization of Multiple Cell Types in Defined 3D Geometries

Vascular Catheters with a Nonleaching Poly-sulfobetaine Surface Modification Reduce Thrombus Formation and Microbial Attachment

Adherence of proteins, cells, and microorganisms to the surface of venous catheters contributes to catheter occlusion, venous thrombosis, thrombotic embolism, and infections. These complications lengthen hospital stays and increase patient morbidity and mortality. Current technologies for inhibiting these complications are limited in duration of efficacy and may induce adverse side effects. To prevent complications over the life span of a device without using active drugs, we modified a catheter with the nonleaching polymeric sulfobetaine (polySB), which coordinates water molecules to the catheter surface. The modified surface effectively reduced protein, mammalian cell, and microbial attachment in vitro and in vivo. Relative to commercial catheters, polySB-modified catheters exposed to human blood in vitro had a >98% reduction in the attachment and a significant reduction in activation of platelets, lymphocytes, monocytes, and neutrophils. Additionally, the accumulation of thrombotic material on the catheter surface was reduced by >99% even after catheters were exposed to serum in vitro for 60 days. In vivo, in a highly thrombogenic canine model, device- and vessel-associated thrombus was reduced by 99%. In vitro adherence of a broad spectrum of microorganisms was reduced on both the external and the internal surfaces of polySB-modified catheters compared to unmodified catheters. When unmodified and polySB-modified catheters were exposed to the same bacterial challenge and implanted into animals, 50% less inflammation and fewer bacteria were associated with polySB-modified catheters. This nonleaching, polySB-modified catheter could have a major impact on reducing thrombosis and infection, thus improving patient health.

Microfluidic Technologies for Accelerating the Clinical Translation of Nanoparticles

Using nanoparticles for therapy and imaging holds tremendous promise for the treatment of major diseases such as cancer. However, their translation into the clinic has been slow because it remains difficult to produce nanoparticles that are consistent 'batch-to-batch', and in sufficient quantities for clinical research. Moreover, platforms for rapid screening of nanoparticles are still lacking. Recent microfluidic technologies can tackle some of these issues, and offer a way to accelerate the clinical translation of nanoparticles. In this Progress Article, we highlight the advances in microfluidic systems that can synthesize libraries of nanoparticles in a well-controlled, reproducible and high-throughput manner. We also discuss the use of microfluidics for rapidly evaluating nanoparticles in vitro under microenvironments that mimic the in vivo conditions. Furthermore, we highlight some systems that can manipulate small organisms, which could be used for evaluating the in vivo toxicity of nanoparticles or for drug screening. We conclude with a critical assessment of the near- and long-term impact of microfluidics in the field of nanomedicine.

Prolonged Nerve Blockade Delays the Onset of Neuropathic Pain

Aberrant neuronal activity in injured peripheral nerves is believed to be an important factor in the development of neuropathic pain. Pharmacological blockade of that activity has been shown to mitigate the onset of associated molecular events in the nervous system. However, results in preventing onset of pain behaviors by providing prolonged nerve blockade have been mixed. Furthermore, the experimental techniques used to date to provide that blockade were limited in clinical potential in that they would require surgical implantation. To address these issues, we have used liposomes (SDLs) containing saxitoxin (STX), a site 1 sodium channel blocker, and the glucocorticoid agonist dexamethasone to provide nerve blocks lasting ~1 wk from a single injection. This formulation is easily injected percutaneously. Animals undergoing spared nerve injury (SNI) developed mechanical allodynia in 1 wk; nerve blockade with a single dose of SDLs (duration of block 6.9 ± 1.2 d) delayed the onset of allodynia by 2 d. Treatment with three sequential SDL injections resulting in a nerve block duration of 18.1 ± 3.4 d delayed the onset of allodynia by 1 mo. This very prolonged blockade decreased activation of astrocytes in the lumbar dorsal horn of the spinal cord due to SNI. Changes in expression of injury-related genes due to SNI in the dorsal root ganglia were not affected by SDLs. These findings suggest that formulations of this kind, which could be easy to apply clinically, can mitigate the development of neuropathic pain.

Quick-release Medical Tape

Medical tape that provides secure fixation of life-sustaining and -monitoring devices with quick, easy, damage-free removal represents a longstanding unmet medical need in neonatal care. During removal of current medical tapes, crack propagation occurs at the adhesive-skin interface, which is also the interface responsible for device fixation. By designing quick-release medical tape to undergo crack propagation between the backing and adhesive layers, we decouple removal and device fixation, enabling dual functionality. We created an ordered adhesive/antiadhesive composite intermediary layer between the medical tape backing and adhesive for which we achieve tunable peel removal force, while maintaining high shear adhesion to secure medical devices. We elucidate the relationship between the spatial ordering of adhesive and antiadhesive regions to create a fully tunable system that achieves strong device fixation and quick, easy, damage-free device removal. We also described ways of neutralizing the residual adhesive on the skin and have observed that thick continuous films of adhesive are easier to remove than the thin islands associated with residual adhesive left by current medical tapes.

Nonendocytic Delivery of Functional Engineered Nanoparticles into the Cytoplasm of Live Cells Using a Novel, High-throughput Microfluidic Device

The ability to straightforwardly deliver engineered nanoparticles into the cell cytosol with high viability will vastly expand the range of biological applications. Nanoparticles could potentially be used as delivery vehicles or as fluorescent sensors to probe the cell. In particular, quantum dots (QDs) may be used to illuminate cytosolic proteins for long-term microscopy studies. Whereas recent advances have been successful in specifically labeling proteins with QDs on the cell membrane, cytosolic delivery of QDs into live cells has remained challenging. In this report, we demonstrate high throughput delivery of QDs into live cell cytoplasm using an uncomplicated microfluidic device while maintaining cell viabilities of 80-90%. We verify that the nanoparticle surface interacts with the cytosolic environment and that the QDs remain nonaggregated so that single QDs can be observed.

Leading the Way in Biomedical Engineering: an Interview with Robert Langer. Interview by Hannah Stanwix, Commissioning Editor

Professor Robert Langer obtained his Bachelor's Degree in Chemical Engineering from Cornell University (NY, USA) in 1970. He received his Sc.D. from the Massachusetts Institute of Technology (MA, USA) in 1974. He is currently the David H Koch Institute Professor at the Massachusetts Institute of Technology. Professor Langer is a member of the Institute of Medicine of the National Academy of Sciences, the National Academy of Engineering and the National Academy of Sciences. At the age of 43 he was the youngest person in history to be elected to all three United States National Academies. Throughout his career, Professor Langer has received over 200 awards including, notably, the Charles Stark Draper Prize (considered the equivalent of the Nobel Prize for engineers), the 2008 Millennium Prize, the 2006 United States National Medal of Science and the 2012 Priestley Medal. In 1996 he was awarded the Gairdner Foundation International Award (the only engineer ever to have been awarded this accolade). Professor Langer has also been the recipient of the Lemelson-MIT prize, which he was awarded with for being "one of history's most prolific inventors in medicine." Professor Langer was selected by Time Magazine in 2001 as one of the 100 most important people in the USA. He has received honorary degrees from several universities worldwide, including Harvard University (MA, USA), the Mt. Sinai School of Medicine (NY, USA), Yale University (CT, USA), the ETH Zurich (Zurich, Switzerland), the Technion-Israel Institute of Technology (Haifa, Israel), the Hebrew University of Jerusalem (Israel), the Université Catholique de Louvain (Louvain-La-Neuve, Belgium), Rensselaer Polytechnic Institute (NY, USA), Willamette University (OR, USA), the University of Liverpool (Liverpool, UK), Bates College (ME, USA), the University of Nottingham (Nottingham, UK), Albany Medical College (NY, USA), Pennsylvania State University (PA, USA), Northwestern University (IL, USA) and Uppsala University (Uppsala, Sweden), and was awarded with the University of California San Francisco Medal in 2009. Professor Langer has founded over 20 biotechnology companies and authored more than 1175 articles. He has over 800 issued or pending patents. Professor Langer is the most cited engineer in history.

Materials for Diabetes Therapeutics

This review is focused on the materials and methods used to fabricate closed-loop systems for type 1 diabetes therapy. Herein, we give a brief overview of current methods used for patient care and discuss two types of possible treatments and the materials used for these therapies-(i) artificial pancreases, comprised of insulin producing cells embedded in a polymeric biomaterial, and (ii) totally synthetic pancreases formulated by integrating continuous glucose monitors with controlled insulin release through degradable polymers and glucose-responsive polymer systems. Both the artificial and the completely synthetic pancreas have two major design requirements: the device must be both biocompatible and be permeable to small molecules and proteins, such as insulin. Several polymers and fabrication methods of artificial pancreases are discussed: microencapsulation, conformal coatings, and planar sheets. We also review the two components of a completely synthetic pancreas. Several types of glucose sensing systems (including materials used for electrochemical, optical, and chemical sensing platforms) are discussed, in addition to various polymer-based release systems (including ethylene-vinyl acetate, polyanhydrides, and phenylboronic acid containing hydrogels).

Microstructured Barbs on the North American Porcupine Quill Enable Easy Tissue Penetration and Difficult Removal

North American porcupines are well known for their specialized hairs, or quills that feature microscopic backward-facing deployable barbs that are used in self-defense. Herein we show that the natural quill's geometry enables easy penetration and high tissue adhesion where the barbs specifically contribute to adhesion and unexpectedly, dramatically reduce the force required to penetrate tissue. Reduced penetration force is achieved by topography that appears to create stress concentrations along regions of the quill where the cross sectional diameter grows rapidly, facilitating cutting of the tissue. Barbs located near the first geometrical transition zone exhibit the most substantial impact on minimizing the force required for penetration. Barbs at the tip of the quill independently exhibit the greatest impact on tissue adhesion force and the cooperation between barbs in the 0-2 mm and 2-4 mm regions appears critical to enhance tissue adhesion force. The dual functions of barbs were reproduced with replica molded synthetic polyurethane quills. These findings should serve as the basis for the development of bio-inspired devices such as tissue adhesives or needles, trocars, and vascular tunnelers where minimizing the penetration force is important to prevent collateral damage.

Painting Blood Vessels and Atherosclerotic Plaques with an Adhesive Drug Depot

The treatment of diseased vasculature remains challenging, in part because of the difficulty in implanting drug-eluting devices without subjecting vessels to damaging mechanical forces. Implanting materials using adhesive forces could overcome this challenge, but materials have previously not been shown to durably adhere to intact endothelium under blood flow. Marine mussels secrete strong underwater adhesives that have been mimicked in synthetic systems. Here we develop a drug-eluting bioadhesive gel that can be locally and durably glued onto the inside surface of blood vessels. In a mouse model of atherosclerosis, inflamed plaques treated with steroid-eluting adhesive gels had reduced macrophage content and developed protective fibrous caps covering the plaque core. Treatment also lowered plasma cytokine levels and biomarkers of inflammation in the plaque. The drug-eluting devices developed here provide a general strategy for implanting therapeutics in the vasculature using adhesive forces and could potentially be used to stabilize rupture-prone plaques.

Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells

Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.

One-Step Multipurpose Surface Functionalization by Adhesive Catecholamine

Surface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface chemistry. To achieve this goal, the incorporation of structurally diverse molecules onto any material surface is an essential capability for ideal surface modification. Here, we present a general strategy of surface modification, in which many diverse surfaces can be functionalized by immobilizing a wide variety of molecules. This strategy functionalizes surfaces by a one-step immersion of substrates in a one-pot mixture of a molecule and a catecholamine surface modification agent. This one-step procedure for surface modification represents a standard protocol to control interfacial properties.

Modelling Human Embryoid Body Cell Adhesion to a Combinatorial Library of Polymer Surfaces

Designing materials to control biology is an intense focus of biomaterials and regenerative medicine research. Discovering and designing materials with appropriate biological compatibility or active control of cells and tissues is being increasingly undertaken using high throughput synthesis and assessment methods. We report a relatively simple but powerful machine-learning method of generating models that link microscopic or molecular properties of polymers or other materials to their biological effects. We illustrate the potential of these methods by developing the first robust, predictive, quantitative, and purely computational models of adhesion of human embryonic stem cell embryoid bodies (hEB) to the surfaces of a 496-member polymer micro array library.

Detection and Management of Renal Cell Carcinoma in the Renal Allograft

Tumours of the transplanted kidney represent a rare form of post-transplantation malignancies. An important aspect of the treatment option is whether the transplanted kidney can be saved or not. Aim of our study was the analysis of our allograft tumours.

Crosslinked Linear Polyethylenimine Enhances Delivery of DNA to the Cytoplasm

Crosslinked polyethylenimines (PEIs) have been frequently examined over the past decade since they can maintain the transfection efficiency of commercially available, 25k branched PEI, but exhibit less cytotoxicity. The argument is often made that the degradability of such polymers, generally synthesized with either disulfide or hydrolytically degradable crosslinkers, is critical to the high efficiency and low toxicity of the system. In this work, we present a crosslinked linear PEI (xLPEI) system in which either disulfide-responsive or non-degradable linkages are incorporated. As with previous systems, strong transfection efficiency in comparison with commercial standards was achieved with low cytotoxicity. However, these properties were shown to be present when either the degradable or non-degradable crosslinker was used. Uncomplexed polymer was demonstrated to be the critical factor determining transfection efficiency for these polymers, mediating efficient endosomal escape without signs of cell membrane damage. While several crosslinked PEI systems in the literature have demonstrated the effect of the disulfide moiety, this work demonstrates that disulfide-mediated unpackaging may not be as important as conventionally thought for some PEI systems.

Development of SiRNA-probes for Studying Intracellular Trafficking of SiRNA Nanoparticles

One important barrier facing the delivery of short interfering RNAs (siRNAs) via synthetic nanoparticles is the rate of nanoparticle disassembly. However, our ability to optimize the release kinetics of siRNAs from nanoparticles for maximum efficacy is limited by the lack of methods to track their intracellular disassembly. Towards this end, we describe the design of two different siRNA-based fluorescent probes whose fluorescence emission changes in response to the assembly state of the nanoparticle. The first probe design involves a redox-sensitive fluorescence-quenched probe that fluoresces only when the nanoparticle is disassembled in a reductive environment. The second probe design is based on a FRET-labeled siRNA pair that fluoresces due to the proximity of the siRNA pair when the nanoparticle is intact. In both approaches, the delivery vehicle need not be labeled. The utility of these probes was investigated with a lipidoid nanoparticle (LNP) as proof-of-concept in both extracellular and intracellular environments. Fluorescence kinetic data from both probes were fit to a two-phase release and decay curve and subsequently quantified to give intracellular disassembly rate constants. Quantitative analysis revealed that the rate constant of siRNA release measured via the fluorescence-quenched probe was almost identical to the rate constant for nanoparticle disassembly measured via the FRET-labeled probes. Furthermore, these probes were utilized to determine subcellular localization of LNPs with the use of automated high-resolution microscopy as they undergo dissociation. Interestingly, this work shows that large amounts of siRNA remain inside vesicular compartments. Altogether, we have developed new siRNA probes that can be utilized with multiple nanocarriers for quantitative and qualitative analysis of nanoparticle dissociation that may serve as a design tool for future delivery systems.

Synergistic Cytotoxicity of Irinotecan and Cisplatin in Dual-drug Targeted Polymeric Nanoparticles

Two unexplored aspects for irinotecan and cisplatin (I&C) combination chemotherapy are: actively targeting both drugs to a specific diseased cell type, and delivering both drugs on the same vehicle to ensure their synchronized entry into the cell at a well-defined ratio. In this work, the authors report the use of targeted polymeric nanoparticles (NPs) to coencapsulate and deliver I&C to cancer cells expressing the prostate-specific membrane antigen.

Formulations for Trans-tympanic Antibiotic Delivery

We have developed a drug delivery system for prolonged trans-tympanic antibiotic delivery from a single dose administration. Increased permeability to ciprofloxacin of the intact tympanic membrane (TM) was achieved by chemical permeation enhancers (CPEs--bupivacaine, limonene, sodium dodecyl sulfate); this was also seen by CPEs contained within a hydrogel (poloxamer 407) to maintain the formulation at the TM. The CPE-hydrogel formulation had minimal effects on auditory thresholds and tissue response in vivo. CPE-hydrogel formulations have potential for ototopical delivery of ciprofloxacin for the treatment of acute otitis media (AOM) and other middle ear diseases.

Three-dimensional Elastomeric Scaffolds Designed with Cardiac-mimetic Structural and Mechanical Features

Tissue-engineered constructs, at the interface of material science, biology, engineering, and medicine, have the capacity to improve outcomes for cardiac patients by providing living cells and degradable biomaterials that can regenerate the native myocardium. With an ultimate goal of both delivering cells and providing mechanical support to the healing heart, we designed three-dimensional (3D) elastomeric scaffolds with (1) stiffnesses and anisotropy mimicking explanted myocardial specimens as predicted by finite-element (FE) modeling, (2) systematically varied combinations of rectangular pore pattern, pore aspect ratio, and strut width, and (3) structural features approaching tissue scale. Based on predicted mechanical properties, three scaffold designs were selected from eight candidates for fabrication from poly(glycerol sebacate) by micromolding from silicon wafers. Large 20×20 mm scaffolds with high aspect ratio features (5:1 strut height:strut width) were reproducibly cast, cured, and demolded at a relatively high throughput. Empirically measured mechanical properties demonstrated that scaffolds were cardiac mimetic and validated FE model predictions. Two-layered scaffolds providing fully interconnected pore networks were fabricated by layer-by-layer assembly. C2C12 myoblasts cultured on one-layered scaffolds exhibited specific patterns of cell elongation and interconnectivity that appeared to be guided by the scaffold pore pattern. Neonatal rat heart cells cultured on two-layered scaffolds for 1 week were contractile, both spontaneously and in response to electrical stimulation, and expressed sarcomeric α-actinin, a cardiac biomarker. This work not only demonstrated several scaffold designs that promoted functional assembly of rat heart cells, but also provided the foundation for further computational and empirical investigations of 3D elastomeric scaffolds for cardiac tissue engineering.

Benchtop Fabrication of Microfluidic Systems Based on Curable Polymers with Improved Solvent Compatibility

This paper describes a general scheme to fabricate microchannels from curable polymers on a laboratory benchtop. Using the scheme described here, benchtop fabrication of SU-8 microfluidic systems was demonstrated for the first time, and their compatibility with organic solvents was demonstrated. The fabrication process has three major stages: 1) transferring patterns of microchannels to polymer films by molding, 2) releasing the patterned film and creating inlets and outlets for fluids, and 3) sealing two films together to create a closed channel system. Addition of a PDMS slab supporting the polymer film provided structural integrity during and after fabrication, allowing manipulation of the polymer films without fracturing or deformation. SU-8 channels fabricated according to this scheme exhibited solvent compatibility against continuous exposure to acetone and ethylacetate, which are incompatible with native PDMS. Using the SU-8 channels, continuous generation of droplets of ethylacetate, and templated synthesis of poly (lactic-co-glycolic acid) (PLGA) microparticles, both with stable size, were demonstrated continuously over 24 h, and at intervals over 75 days.

A Highly Tunable Biocompatible and Multifunctional Biodegradable Elastomer

Modular 'click-in-emulsion' Bone-targeted Nanogels

A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, ∼70 nm in diameter and synthesized via an astoichiometric click-chemistry in-emulsion method, controllably display residual, free clickable functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.

Degradable Terpolymers with Alkyl Side Chains Demonstrate Enhanced Gene Delivery Potency and Nanoparticle Stability

Degradable, cationic poly(β-amino ester)s (PBAEs) with alkyl side chains are developed for non-viral gene delivery. Nanoparticles formed from these PBAE terpolymers exhibit significantly enhanced DNA transfection potency and resistance to aggregation. These hydrophobic PBAE terpolymers, but not PBAEs lacking alkyl side chains, support interaction with PEG-lipid conjugates, facilitating their functionalization with shielding and targeting moieties and accelerating the in vivo translation of these materials.

Bio-inspired Polymer Composite Actuator and Generator Driven by Water Gradients

Here we describe the development of a water-responsive polymer film. Combining both a rigid matrix (polypyrrole) and a dynamic network (polyol-borate), strong and flexible polymer films were developed that can exchange water with the environment to induce film expansion and contraction, resulting in rapid and continuous locomotion. The film actuator can generate contractile stress up to 27 megapascals, lift objects 380 times heavier than itself, and transport cargo 10 times heavier than itself. We have assembled a generator by associating this actuator with a piezoelectric element. Driven by water gradients, this generator outputs alternating electricity at ~0.3 hertz, with a peak voltage of ~1.0 volt. The electrical energy is stored in capacitors that could power micro- and nanoelectronic devices.

A Vector-free Microfluidic Platform for Intracellular Delivery

Intracellular delivery of macromolecules is a challenge in research and therapeutic applications. Existing vector-based and physical methods have limitations, including their reliance on exogenous materials or electrical fields, which can lead to toxicity or off-target effects. We describe a microfluidic approach to delivery in which cells are mechanically deformed as they pass through a constriction 30-80% smaller than the cell diameter. The resulting controlled application of compression and shear forces results in the formation of transient holes that enable the diffusion of material from the surrounding buffer into the cytosol. The method has demonstrated the ability to deliver a range of material, such as carbon nanotubes, proteins, and siRNA, to 11 cell types, including embryonic stem cells and immune cells. When used for the delivery of transcription factors, the microfluidic devices produced a 10-fold improvement in colony formation relative to electroporation and cell-penetrating peptides. Indeed, its ability to deliver structurally diverse materials and its applicability to difficult-to-transfect primary cells indicate that this method could potentially enable many research and clinical applications.

Stepwise Metal-ligand Cooperation by a Reversible Aromatization/deconjugation Sequence in Ruthenium Complexes with a Tetradentate Phenanthroline-based Ligand

The synthesis and reactivity of ruthenium complexes containing the tetradentate phenanthroline-based phosphine ligand 2,9-bis((di-tert-butylphosphino)methyl)-1,10-phenanthroline (PPhenP) is described. The hydrido chloro complex [RuHCl(PPhenP)] (2) undergoes facile dearomatization upon deprotonation of the benzylic position, to give [RuH(PPhenP-H)] (4). Addition of dihydrogen to 4 causes rearomatization of the phenanthroline moiety to trans-[Ru(H)(2)(PPhenP)] (5), followed by hydrogenation of an aromatic heterocycle in the ligand backbone, to give a new dearomatized and deconjugated complex [RuH(PPhenP*-H)] (6). These aromatization/deconjugation steps of the coordinated ligand were demonstrated to be reversible and operative in the dehydrogenation of primary alcohols without the need for a hydrogen acceptor. This aromatization/deconjugation sequence constitutes an unprecedented mode of a stepwise cooperation between the metal center and the coordinated ligand.

Lipidoid-coated Iron Oxide Nanoparticles for Efficient DNA and SiRNA Delivery

The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MRI imaging and magnetic hyperthermia.

Discovery of Novel Materials with Broad Resistance to Bacterial Attachment Using Combinatorial Polymer Microarrays

A new class of bacteria-attachment-resistant materials is discovered using a multi-generation polymer microarray methodology that reduces bacterial attachment by up to 99.3% compared with a leading commercially available silver hydrogel anti-bacterial material. The coverage of three bacterial species, Pseudomonas aeruginosa, Staphylococcus aureus, and uropathogenic Escherichia coli is assessed.

BCL2A1 is a Lineage-specific Antiapoptotic Melanoma Oncogene That Confers Resistance to BRAF Inhibition

Although targeting oncogenic mutations in the BRAF serine/threonine kinase with small molecule inhibitors can lead to significant clinical responses in melanoma, it fails to eradicate tumors in nearly all patients. Successful therapy will be aided by identification of intrinsic mechanisms that protect tumor cells from death. Here, we used a bioinformatics approach to identify drug-able, "driver" oncogenes restricted to tumor versus normal tissues. Applying this method to 88 short-term melanoma cell cultures, we show that the antiapoptotic BCL2 family member BCL2A1 is recurrently amplified in ∼30% of melanomas and is necessary for melanoma growth. BCL2A1 overexpression also promotes melanomagenesis of BRAF-immortalized melanocytes. We find that high-level expression of BCL2A1 is restricted to melanoma due to direct transcriptional control by the melanoma oncogene MITF. Although BRAF inhibitors lead to cell cycle arrest and modest apoptosis, we find that apoptosis is significantly enhanced by suppression of BCL2A1 in melanomas with BCL2A1 or MITF amplification. Moreover, we find that BCL2A1 expression is associated with poorer clinical responses to BRAF pathway inhibitors in melanoma patients. Cotreatment of melanomas with BRAF inhibitors and obatoclax, an inhibitor of BCL2A1 and other BCL2 family members, overcomes intrinsic resistance to BRAF inhibitors in BCL2A1-amplified cells in vitro and in vivo. These studies identify MITF-BCL2A1 as a lineage-specific oncogenic pathway in melanoma and underscore its role for improved response to BRAF-directed therapy.

Strategies for MCR Image Analysis of Large Hyperspectral Data-sets

Polymer microarrays are a key enabling technology for high throughput materials discovery. In this study, multivariate image analysis, specifically multivariate curve resolution (MCR), is applied to the hyperspectral time of flight secondary ion mass spectroscopy (ToF-SIMS) data from eight individual microarray spots. Rather than analysing the data individually, the data-sets are collated and analysed as a single large data-set. Desktop computing is not a practical method for undertaking MCR analysis of such large data-sets due to the constraints of memory and computational overhead. Here, a distributed memory High-Performance Computing facility (HPC) is used. Similar to what is achieved using MCR analysis of individual samples, the results from this consolidated data-set allow clear identification of the substrate material; furthermore, specific chemistries common to different spots are also identified. The application of the HPC facility to the MCR analysis of ToF-SIMS hyperspectral data-sets demonstrates a potential methodology for the analysis of macro-scale data without compromising spatial resolution (data 'binning'). Copyright © 2012 John Wiley & Sons, Ltd.

High Throughput Discovery of Thermo-responsive Materials Using Water Contact Angle Measurements and Time-of-flight Secondary Ion Mass Spectrometry

Switchable materials that alter their chemical or physical properties in response to external stimuli allow for temporal control of material-biological interactions, thus, are of interest for many biomaterial applications. Our interest is the discovery of new materials suitable to the specific requirements of certain biological systems. A high throughput methodology has been developed to screen a library of polymers for thermo-responsiveness, which has resulted in the identification of novel switchable materials. To elucidate the mechanism by which the materials switch, time-of-flight secondary ion mass spectrometry has been employed to analyse the top 2 nm of the polymer samples at different temperatures. The surface enrichment of certain molecular fragments has been identified by time-of-flight secondary ion mass spectrometry analysis at different temperatures, suggesting an altered molecular conformation. In one example, a switch between an extended and collapsed conformation is inferred. Copyright © 2012 John Wiley & Sons, Ltd.

Fully Biodegradable Airway Stents Using Amino Alcohol-Based Poly(ester Amide) Elastomers

Airway stents are often used to maintain patency of the tracheal and bronchial passages in patients suffering from central airway obstruction caused by malignant tumors, scarring, and injury. Like most conventional medical implants, they are designed to perform their functions for a limited period of time, after which surgical removal is often required. Two primary types of airway stents are in general use, metal mesh devices and elastomeric tubes; both are constructed using permanent materials, and must be removed when no longer needed, leading to potential complications. This paper describes the development of process technologies for bioresorbable prototype elastomeric airway stents that would dissolve completely after a predetermined period of time or by an enzymatic triggering mechanism. These airway stents are constructed from biodegradable elastomers with high mechanical strength, flexibility and optical transparency. This work combines microfabrication technology with bioresorbable polymers, with the ultimate goal of a fully biodegradable airway stent ultimately capable of improving patient safety and treatment outcomes.

Development and in Vivo Efficacy of Targeted Polymeric Inflammation-resolving Nanoparticles

Excessive inflammation and failed resolution of the inflammatory response are underlying components of numerous conditions such as arthritis, cardiovascular disease, and cancer. Hence, therapeutics that dampen inflammation and enhance resolution are of considerable interest. In this study, we demonstrate the proresolving activity of sub-100-nm nanoparticles (NPs) containing the anti-inflammatory peptide Ac2-26, an annexin A1/lipocortin 1-mimetic peptide. These NPs were engineered using biodegradable diblock poly(lactic-co-glycolic acid)-b-polyethyleneglycol and poly(lactic-co-glycolic acid)-b-polyethyleneglycol collagen IV-targeted polymers. Using a self-limited zymosan-induced peritonitis model, we show that the Ac2-26 NPs (100 ng per mouse) were significantly more potent than Ac2-26 native peptide at limiting recruitment of polymononuclear neutrophils (56% vs. 30%) and at decreasing the resolution interval up to 4 h. Moreover, systemic administration of collagen IV targeted Ac2-26 NPs (in as low as 1 µg peptide per mouse) was shown to significantly block tissue damage in hind-limb ischemia-reperfusion injury by up to 30% in comparison with controls. Together, these findings demonstrate that Ac2-26 NPs are proresolving in vivo and raise the prospect of their use in chronic inflammatory diseases such as atherosclerosis.

Injectable Nano-network for Glucose-mediated Insulin Delivery

Diabetes mellitus, a disorder of glucose regulation, is a global burden affecting 366 million people across the world. An artificial "closed-loop" system able to mimic pancreas activity and release insulin in response to glucose level changes has the potential to improve patient compliance and health. Herein we develop a glucose-mediated release strategy for the self-regulated delivery of insulin using an injectable and acid-degradable polymeric network. Formed by electrostatic interaction between oppositely charged dextran nanoparticles loaded with insulin and glucose-specific enzymes, the nanocomposite-based porous architecture can be dissociated and subsequently release insulin in a hyperglycemic state through the catalytic conversion of glucose into gluconic acid. In vitro insulin release can be modulated in a pulsatile profile in response to glucose concentrations. In vivo studies validated that these formulations provided improved glucose control in type 1 diabetic mice subcutaneously administered with a degradable nano-network. A single injection of the developed nano-network facilitated stabilization of the blood glucose levels in the normoglycemic state (<200 mg/dL) for up to 10 days.

Enhanced Function of Immuno-isolated Islets in Diabetes Therapy By co-encapsulation with an Anti-inflammatory Drug

Immuno-isolation of islets has the potential to enable the replacement of pancreatic function in diabetic patients. However, host response to the encapsulated islets frequently leads to fibrotic overgrowth with subsequent impairment of the transplanted grafts. Here, we identified and incorporated anti-inflammatory agents into islet-containing microcapsules to address this challenge. In vivo subcutaneous screening of 16 small molecule anti-inflammatory drugs was performed to identify promising compounds that could minimize the formation of fibrotic cell layers. Using parallel non-invasive fluorescent and bioluminescent imaging, we identified dexamethasone and curcumin as the most effective drugs in inhibiting the activities of inflammatory proteases and reactive oxygen species in the host response to subcutaneously injected biomaterials. Next, we demonstrated that co-encapsulating curcumin with pancreatic rat islets in alginate microcapsules reduced fibrotic overgrowth and improved glycemic control in a mouse model of chemically-induced type I diabetes. These results showed that localized administration of anti-inflammatory drug can improve the longevity of encapsulated islets and may facilitate the translation of this technology toward a long-term cure for type I diabetes.

Live Well: a Practical and Effective Low-intensity Dietary Counseling Intervention for Use in Primary Care Patients with Dyslipidemia--a Randomized Controlled Pilot Trial

Diet is the first line of treatment for elevated cholesterol. High-intensity dietary counseling (≥360 minutes/year of contact with providers) improves blood lipids, but is expensive and unsustainable in the current healthcare settings. Low-intensity counseling trials (≤30 minutes/year) have demonstrated modest diet changes, but no improvement in lipids. This pilot study evaluated the feasibility and the effects on lipids and diet of a low-intensity dietary counseling intervention provided by the primary care physician (PCP), in patients at risk for cardiovascular diseases.

A Stiff Injectable Biodegradable Elastomer

Injectable materials often have shortcomings in mechanical and drug-eluting properties that are attributable to their high water contents. A water-free, liquid four-armed PEG modified with dopamine end groups is described which changed from liquid to elastic solid by reaction with a small volume of Fe(3+) solution. The elastic modulus and degradation times increased with increasing Fe(3+) concentrations. Both the free base and the water-soluble form of lidocaine could be dissolved in the PEG4-dopamine and released in a sustained manner from the cross-linked matrix. PEG4-dopamine was retained in the subcutaneous space in vivo for up to 3 weeks with minimal inflammation. This material's tailorable mechanical properties, biocompatibility, ability to incorporate hydrophilic and hydrophobic drugs and release them slowly are desirable traits for drug delivery and other biomedical applications.

Nanoparticle Encapsulation of Mitaplatin and the Effect Thereof on in Vivo Properties

Nanoparticle (NP) therapeutics have the potential to significantly alter the in vivo biological properties of the pharmaceutically active agents that they carry. Here we describe the development of a polymeric NP, termed M-NP, comprising poly(D,L-lactic-co-glycolic acid)-block-poly(ethylene glycol) (PLGA-PEG), stabilized with poly(vinyl alcohol) (PVA), and loaded with a water-soluble platinum(IV) [Pt(IV)] prodrug, mitaplatin. Mitaplatin, c,c,t-[PtCl2(NH3)2(OOCCHCl2)2], is a compound designed to release cisplatin, an anticancer drug in widespread clinical use, and the orphan drug dichloroacetate following chemical reduction. An optimized preparation of M-NP by double emulsion and its physical characterization are reported, and the influence of encapsulation on the properties of the platinum agent is evaluated in vivo. Encapsulation increases the circulation time of Pt in the bloodstream of rats. The biodistribution of Pt in mice is also affected by nanoparticle encapsulation, resulting in reduced accumulation in the kidneys. Finally, the efficacy of both free mitaplatin and M-NP, measured by tumor growth inhibition in a mouse xenograft model of triple-negative breast cancer, reveals that controlled release of mitaplatin over time from the nanoparticle treatment produces long-term efficacy comparable to that of free mitaplatin, which might limit toxic side effects.

Combinatorial Synthesis with High Throughput Discovery Of protein-resistant Membrane Surfaces

Using combinatorial methods, we synthesized a series of new vinyl amide monomers and graft-polymerized them to light-sensitive poly(ether sulfone) (PES) porous films for protein resistance. To increase the discovery rate and statistical confidence, we developed high throughput surface modification methods (HTP) that allow synthesis, screening and selection of desirable monomers from a large library in a relatively short time (days). A series of amide monomers were synthesized by amidation of methacryloyl chloride with amines and grafted onto commercial poly(ether sulfone) (PES) membranes using irradiation from atmospheric pressure plasma (APP). The modified PES membrane surfaces were then tested and screened for static protein adhesion using HTP. Hydroxyl amide monomers N-(3-hydroxypropyl)methacrylamide (A3), N-(4-hydroxybutyl)methacrylamide (A4), and N-(4-hydroxybutyl)methacrylamide (A6), ethylene glycol (EG) monomer N-(3-methoxypropyl)methacrylamide (A7), and N-(2-(dimethylamino)ethyl)-N-methylmethacrylamide (A8), and N-(2-(diethylamino)ethyl)-N-methylmethacrylamide (A9) all terminated with tertiary amines and were shown to have protein resistance. The PES membranes modified with these monomers exhibited both low protein adhesion (i.e. membrane plugging or fouling) and high flux. Their performance is comparable with previously identified best performing PEG and zwitterionic monomers, i.e. the so-called gold-standard for protein resistance. Combining a Hansen solubility parameter (HSP) analysis of the amide monomers and the HTP filtration results, we conclude that monomer solubility in water correlates with protein-resistant surfaces, presumably through its effects on surface-water interactions.

[Milestone in Hungarian Organ Transplantation: Joining Eurotransplant]

Hungarian organ transplantation reached a new milestone after half-a-century history, when becoming a full member of the 135-million Eurotransplant community this year. The transplantation of the five organs: kidney, liver, pancreas, heart and lung became a routine procedure. A handful of specialists performed nearly 7000 transplantations and doing so supported the evolution of a special branch of the Hungarian health care system. The author reports the latest results of the preliminary membership year, looking forward with great optimism by seeing new horizons with the advantages of the full membership.

[50-year History of Kidney Transplantation in Hungary]

The first Hungarian kidney transplantation was performed by András Németh in Szeged in 1962, approximately 50 years ago. A preliminary agreement with Eurotransplant was signed in 2011, and special patient groups gained benefit from this cooperation in 2012, wnich lead to a full membership to Eurotransplant. This event inspired the authors to review the history of Hungarian kidney transplantation of the past 50 years, from the first operation to recent via the specific cornerstones of the transplant program. The donor of the first Hungarian kidney transplantation was the brother of the recipient. The operation itself was technically successful, but the lack of immunosuppression caused graft rejection, and the patient died after 79 days. His brother, the donor, is still healthy, after 50 years, and he encourages everybody to donate organs. Organized kidney transplant program started more than 10 years later, such as 1973, in Budapest. The program was supported by the Ministry of Health. New centers joined the program later, Szeged in 1979, Debrecen in 1991 and Pécs in 1993. These four transplant centers work currently in Hungary, and 6611 kidney transplantation has been performed up to the end of year 2012.

[Role of Simultaneous Pancreas-kidney Transplantation in the Treatment of Diabetes Mellitus]

The life expectancy of patients with type 1 diabetes mellitus is inferior to that of patients with some malignancies. Simultaneous pancreas-kidney transplantation is the procedure providing the best survival results among all options of renal replacement therapy. The operative techniques and immunosuppresion have been standardized in the last decade. Although the number of transplantable organs falls behind the need, simultaneous pancreas-kidney transplantation is the method of choice for the eligible patients. The results of the two Hungarian simultaneous pancreas-kidney transplantation programs are in accordance with data published in the international literature.

Biomaterials and Biotechnology: from the Discovery of the First Angiogenesis Inhibitors to the Development of Controlled Drug Delivery Systems and the Foundation of Tissue Engineering

This paper describes the discovery of the first inhibitors of angiogenesis; the discoveries that led to the development of the first biocompatible controlled release systems for macromolecules, and findings that helped to create the field of tissue engineering. In addition, new paradigms for creating biomaterials, early work on nanotechnology in medicine and intelligent drug delivery systems are discussed.

A Personal Account of Translating Discoveries in an Academic Lab

3D Structural Patterns in Scalable, Elastomeric Scaffolds Guide Engineered Tissue Architecture

Microfabricated elastomeric scaffolds with 3D structural patterns are created by semiautomated layer-by-layer assembly of planar polymer sheets with through-pores. The mesoscale interconnected pore architectures governed by the relative alignment of layers are shown to direct cell and muscle-like fiber orientation in both skeletal and cardiac muscle, enabling scale up of tissue constructs towards clinically relevant dimensions.

Efficiency of SiRNA Delivery by Lipid Nanoparticles is Limited by Endocytic Recycling

Despite efforts to understand the interactions between nanoparticles and cells, the cellular processes that determine the efficiency of intracellular drug delivery remain unclear. Here we examine cellular uptake of short interfering RNA (siRNA) delivered in lipid nanoparticles (LNPs) using cellular trafficking probes in combination with automated high-throughput confocal microscopy. We also employed defined perturbations of cellular pathways paired with systems biology approaches to uncover protein-protein and protein-small molecule interactions. We show that multiple cell signaling effectors are required for initial cellular entry of LNPs through macropinocytosis, including proton pumps, mTOR and cathepsins. siRNA delivery is substantially reduced as ≅70% of the internalized siRNA undergoes exocytosis through egress of LNPs from late endosomes/lysosomes. Niemann-Pick type C1 (NPC1) is shown to be an important regulator of the major recycling pathways of LNP-delivered siRNAs. NPC1-deficient cells show enhanced cellular retention of LNPs inside late endosomes and lysosomes, and increased gene silencing of the target gene. Our data suggest that siRNA delivery efficiency might be improved by designing delivery vehicles that can escape the recycling pathways.

Formation of an Iron Phosphine-borane Complex by Formal Insertion of BH₃ into the Fe-P Bond

A unique hydrido phosphine-borane iron(II) complex [(dppa)(Ph₂P-N-P(BH₃)Ph₂)Fe(H)] (1) was obtained by the reaction of iron(II) chloride and two equivalents of bis(diphenylphosphino)amine (dppa) with an excess of sodium borohydride in acetonitrile-ethanol mixtures. Detailed investigations of the reaction revealed that a mixture of cis- and trans-[(dppa)₂Fe(NCMe)₂]²⁺ is formed prior to the reduction by sodium borohydride. Depending on the solvent, different products were obtained by the reduction: in acetonitrile-ethanol mixtures the hydrido phosphine-borane complex 1 is formed by formal insertion of BH₃, while the reduction in pure acetonitrile results in the formation of the cationic complex trans-[(dppa)₂Fe(H)(NCMe)](BH₄) (4). Complex 4 is remarkably stable in ethanol and does not undergo phosphine-borane formation, even in the presence of excess sodium borohydride. This observation suggests that the phosphine-borane complex is generated by the reaction with the first equivalent of sodium borohydride with the participation of ethanol, followed by deprotonation or dihydrogen elimination. Experiments with similar diphosphine ligands, such as bis(diphenylphosphino)methane, did not yield a phosphine-borane complex, indicating the crucial role of the amine group in the observed reactivity.

Synthesis and in Vitro Evaluation of a Multifunctional and Surface-switchable Nanoemulsion Platform

We present a multifunctional nanoparticle platform that has targeting moieties shielded by a matrix metalloproteinase-2 (MMP2) cleavable PEG coating. Upon incubation with MMP2 this surface-switchable coating is removed and the targeting ligands become available for binding. The concept was evaluated in vitro using biotin and αvβ3-integrin-specific RGD-peptide functionalized nanoparticles.

Multiparametric Approach for the Evaluation of Lipid Nanoparticles for SiRNA Delivery

Nanoparticle-mediated siRNA delivery is a complex process that requires transport across numerous extracellular and intracellular barriers. As such, the development of nanoparticles for efficient delivery would benefit from an understanding of how parameters associated with these barriers relate to the physicochemical properties of nanoparticles. Here, we use a multiparametric approach for the evaluation of lipid nanoparticles (LNPs) to identify relationships between structure, biological function, and biological activity. Our results indicate that evaluation of multiple parameters associated with barriers to delivery such as siRNA entrapment, pKa, LNP stability, and cell uptake as a collective may serve as a useful prescreening tool for the advancement of LNPs in vivo. This multiparametric approach complements the use of in vitro efficacy results alone for prescreening and improves in vitro-in vivo translation by minimizing false negatives. For the LNPs used in this work, the evaluation of multiple parameters enabled the identification of LNP pKa as one of the key determinants of LNP function and activity both in vitro and in vivo. It is anticipated that this type of analysis can aid in the identification of meaningful structure-function-activity relationships, improve the in vitro screening process of nanoparticles before in vivo use, and facilitate the future design of potent nanocarriers.

Enhanced Photothermal Effect of Plasmonic Nanoparticles Coated with Reduced Graphene Oxide

We report plasmonic gold nanoshells and nanorods coated with reduced graphene oxide that produce an enhanced photothermal effect when stimulated by near-infrared (NIR) light. Electrostatic interactions between nanosized graphene oxide and gold nanoparticles followed by in situ chemical reduction generated reduced graphene oxide-coated nanoparticles; the coating was demonstrated using Raman and HR-TEM. Reduced graphene oxide-coated gold nanoparticles showed enhanced photothermal effect compared to noncoated or nonreduced graphene oxide-coated gold nanoparticles. Reduced graphene oxide-coated gold nanoparticles killed cells more rapidly than did noncoated or nonreduced graphene oxide-coated gold nanoparticles.

Synthesis, Structures, and Dearomatization by Deprotonation of Iron Complexes Featuring Bipyridine-based PNN Pincer Ligands

The synthesis and characterization of new iron pincer complexes bearing bipyridine-based PNN ligands is reported. Three phosphine-substituted pincer ligands, namely, the known (t)Bu-PNN (6-((di-tert-butylphosphino)methyl)-2,2'-bipyridine) and the two new (i)Pr-PNN (6-((di-iso-propylphosphino)methyl)-2,2'-bipyridine) and Ph-PNN (6-((diphenylphosphino)methyl)-2,2'-bipyridine) ligands were synthesized and studied in ligation reactions with iron(II) chloride and bromide. These reactions lead to the formation of two types of complexes: mono-chelated neutral complexes of the type [(R-PNN)Fe(X)2] and bis-chelated dicationic complexes of the type [(R-PNN)2Fe](2+). The complexes [(R-PNN)Fe(X)2] (1: R = (t)Bu, X = Cl, 2: R = (t)Bu, X = Br, 3: R = (i)Pr, X = Cl, and 4: R = (i)Pr, X = Br) are readily prepared from reactions of FeX2 with the free R-PNN ligand in a 1:1 ratio. Magnetic susceptibility measurements show that these complexes have a high-spin ground state (S = 2) at room temperature. Employing a 2-fold or higher excess of (i)Pr-PNN, diamagnetic hexacoordinated dicationic complexes of the type [((i)Pr-PNN)2Fe](X)2 (5: X = Cl, and 6: X = Br) are formed. The reactions of Ph-PNN with FeX2 in a 1:1 ratio lead to similar complexes of the type [(Ph-PNN)2Fe](FeX4) (7: X = Cl, and 8: X = Br). Single crystal X-ray studies of 1, 2, 4, 6, and 8 do not indicate electron transfer from the Fe(II) centers to the neutral bipyridine unit based on the determined bond lengths. Density functional theory (DFT) calculations were performed to compare the relative energies of the mono- and bis-chelated complexes. The doubly deprotonated complexes [(R-PNN*)2Fe] (9: R = (i)Pr, and 10: R = Ph) were synthesized by reactions of the dicationic complexes 6 and 8 with KO(t)Bu. The dearomatized nature of the central pyridine of the pincer ligand was established by X-ray diffraction analysis of single crystals of 10. Reactivity studies show that 9 and 10 have a slightly different behavior in protonation reactions.

Drug Delivery Interfaces in the 21st Century: from Science Fiction Ideas to Viable Technologies

Early science fiction envisioned the future of drug delivery as targeted micrometer-scale submarines and "cyborg" body parts. Here we describe the progression of the field toward technologies that are now beginning to capture aspects of this early vision. Specifically, we focus on the two most prominent types of systems in drug delivery: the intravascular micro/nano drug carriers for delivery to the site of pathology and drug-loaded implantable devices that facilitate release with the predefined kinetics or in response to a specific cue. We discuss the unmet clinical needs that inspire these designs, the physiological factors that pose difficult challenges for their realization, and viable technologies that promise robust solutions. We also offer a perspective on where drug delivery may be in the next 50 years based on expected advances in material engineering and in the context of future diagnostics.

Synthesis of Polymer-lipid Nanoparticles for Image-guided Delivery of Dual Modality Therapy

For advanced treatment of diseases such as cancer, multicomponent, multifunctional nanoparticles hold great promise. In the current study we report the synthesis of a complex nanoparticle (NP) system with dual drug loading as well as diagnostic properties. To that aim we present a methodology where chemically modified poly(lactic-co-glycolic) acid (PLGA) polymer is formulated into a polymer-lipid NP that contains a cytotoxic drug doxorubicin (DOX) in the polymeric core and an anti-angiogenic drug sorafenib (SRF) in the lipidic corona. The NP core also contains gold nanocrystals (AuNCs) for imaging purposes and cyclodextrin molecules to maximize the DOX encapsulation in the NP core. In addition, a near-infrared (NIR) Cy7 dye was incorporated in the coating. To fabricate the NP we used a microfluidics-based technique that offers unique NP synthesis conditions, which allowed for encapsulation and fine-tuning of optimal ratios of all the NP components. NP phantoms could be visualized with computed tomography (CT) and near-infrared (NIR) fluorescence imaging. We observed timed release of the encapsulated drugs, with fast release of the corona drug SRF and delayed release of a core drug DOX. In tumor bearing mice intravenously administered NPs were found to accumulate at the tumor site by fluorescence imaging.

Neighborhood Environment and Physical Activity Among Older Women: Findings From the San Diego Cohort of the Women's Health Initiative

Background: Few studies of older adults have compared environmental correlates of walking and physical activity in women who may be more influenced by the environment. Environmental measures at different spatial levels have seldom been compared. Findings from previous studies are generally inconsistent. Methods: This study investigated the relationship between the built environment and physical activity in older women from the Women's Health Initiative cohort in San Diego County (N=5,401). Built environment measures were created for three buffers around participants' residential address. Linear regression analyses investigated the relationship between the built environment features and self-reported physical activity and walking. Results: Total walking was significantly positively associated with the walkability index (B=.050: half-mile buffer), recreation facility density (B=.036: one-mile buffer), and distance to the coast (B=-.064) (ps<.05). Total physical activity was significantly negatively associated with distance to the coast and positively with recreation facility density (B=.036: one-mile buffer) (p<.05). Conclusions: Although effect sizes were small, we did find important relationships between walkability and walking in older adults, which supports recommendations for community design features to include age friendly elements. More intense physical activity may occur in recreational settings than neighborhood streets.

Parallel Microfluidic Synthesis of Size-tunable Polymeric Nanoparticles Using 3D Flow Focusing Towards in Vivo Study

Microfluidic synthesis of nanoparticles (NPs) can enhance the controllability and reproducibility in physicochemical properties of NPs compared to bulk synthesis methods. However, applications of microfluidic synthesis are typically limited to in vitro studies due to low production rates. Herein, we report the parallelization of NP synthesis by 3D hydrodynamic flow focusing (HFF) using a multilayer microfluidic system to enhance the production rate without losing the advantages of reproducibility, controllability, and robustness. Using parallel 3D HFF, polymeric poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) NPs with sizes tunable in the range of 13-150nm could be synthesized reproducibly with high production rate. As a proof of concept, we used this system to perform in vivo pharmacokinetic and biodistribution study of small (20nm diameter) PLGA-PEG NPs that are otherwise difficult to synthesize. Microfluidic parallelization thus enables synthesis of NPs with tunable properties with production rates suitable for both in vitro and in vivo studies.

Correction to Mass Production and Size Control of Lipid-Polymer Hybrid Nanoparticles Through Controlled Microvortices

Rational Design of a Biomimetic Cell Penetrating Peptide Library

Cell penetrating peptides have demonstrated potential to facilitate the cellular delivery of therapeutic molecules. Here we develop a set of 50 cell penetrating peptide based formulations with potential to deliver small interfering RNAs intercellularly. The transfection efficacy of siRNA containing lipid-like nanoparticles decorated with different peptides was evaluated both in vitro and in vivo and correlated with the peptide physical and chemical properties. In vitro, these particles were internalized primarily through macropinocytosis. When the peptides were presented to bone marrow-derived dendritic cells, they induce low immunoactivation relative to control cell penetrating peptides including the antennapedia homeodomain and TAT, as quantified by the expression of activation specific surface proteins like CD80, CD86, and major histocompatibility complex class II. In vivo, peptide decorated nanoparticles primarily accumulated in the lungs and the liver. Three human peptides derived from surfactant protein B (a lung surfactant protein), orexin (a neuropeptide hormone, and lactoferricin (a globular glycoprotein) that exist in many physiological fluids facilitated the in vivo delivery of siRNA and induce significant knock down (90%) of a hepatocyte expressed protein, coagulation Factor VII.

A Photo-triggered Layered Surface Coating Producing Reactive Oxygen Species

We report a photoactive surface coating which produces cytotoxic reactive oxygen species (ROS) upon irradiation with near infrared (NIR) light. The coating is assembled layer-by-layer, and consists of cross-linked hyaluronic acid (HA) and poly-l-lysine (PLL) modified with the photoactive molecule pheophorbide a. Pheophorbide a loading can be fine-tuned by varying the number of bilayers, yielding stable materials with the capacity to generate repeated and/or prolonged light-triggered ROS release. Light irradiation of the photoactive surface coatings provides a versatile platform for the spatiotemporal control of events at the material-tissue interface, such as bacterial colonization, platelet adhesion, and mammalian cell attachment.

Single Step Reconstitution of Multifunctional High-Density Lipoprotein-Derived Nanomaterials Using Microfluidics

High-density lipoprotein (HDL) is a natural nanoparticle that transports peripheral cholesterol to the liver. Reconstituted high-density lipoprotein (rHDL) exhibits antiatherothrombotic properties and is being considered as a natural treatment for cardiovascular diseases. Furthermore, HDL nanoparticle platforms have been created for targeted delivery of therapeutic and diagnostic agents. The current methods for HDL reconstitution involve lengthy procedures that are challenging to scale up. A central need in the synthesis of rHDL, and multifunctional nanomaterials in general, is to establish large-scale production of reproducible and homogeneous batches in a simple and efficient fashion. Here, we present a large-scale microfluidics-based manufacturing method for single-step synthesis of HDL-mimicking nanomaterials (μHDL). μHDL is shown to have the same properties (e.g., size, morphology, bioactivity) as conventionally reconstituted HDL and native HDL. In addition, we were able to incorporate simvastatin (a hydrophobic drug) into μHDL, as well as gold, iron oxide, quantum dot nanocrystals or fluorophores to enable its detection by computed tomography (CT), magnetic resonance imaging (MRI), or fluorescence microscopy, respectively. Our approach may contribute to effective development and optimization of lipoprotein-based nanomaterials for medical imaging and drug delivery.

Combined Surface Micropatterning and Reactive Chemistry Maximizes Tissue Adhesion with Minimal Inflammation

The use of tissue adhesives for internal clinical applications is limited due to a lack of materials that balance strong adhesion with biocompatibility. The use of substrate topography is explored to reduce the volume of a highly reactive and toxic glue without compromising adhesive strength. Micro-textured patches coated with a thin layer of cyanoacrylate glue achieve similar adhesion levels to patches employing large amounts of adhesive, and is superior to the level of adhesion achieved when a thin coating is applied to a non-textured patch. In vivo studies demonstrate reduced tissue inflammation and necrosis for patterned patches with a thinly coated layer of reactive glue, thus overcoming a significant challenge with existing tissue adhesives such as cyanoacrylate. Closure of surgical stomach and colon defects in a rat model is achieved without abdominal adhesions. Harnessing the synergy between surface topography and reactive chemistry enables controlled tissue adhesion with an improved biocompatibility profile without requiring changes in the chemical composition of reactive tissue glues.

Electrical Stimulation Via a Biocompatible Conductive Polymer Directs Retinal Progenitor Cell Differentiation

The goal of this study was to simulate in vitro the spontaneous electrical wave activity associated with retinal development and investigate if such biometrically designed signals can enhance differentiation of mouse retinal progenitor cells (mRPC). To this end, we cultured cells on an electroconductive transplantable polymer, polypyrrole (PPy) and measured gene expression and morphology of the cells. Custom-made 8-well cell culture chambers were designed to accommodate PPy deposited onto indium tin oxide-coated (ITO) glass slides, with precise control of the PPy film thickness. mRPCs were isolated from post-natal day 1 (P1) green fluorescent protein positive (GFP+) mice, expanded, seeded onto PPY films, allowed to adhere for 24 hours, and then subjected to electrical stimulation (100 µA pulse trains, 5 s in duration, once per minute) for 4 days. Cultured cells and non-stimulated controls were processed for immunostaining and confocal analysis, and for RNA extraction and quantitative PCR. Stimulated cells expressed significantly higher levels of the early photoreceptor marker cone-rod homebox (CRX, the earliest known marker of photoreceptor identity), and protein kinase-C (PKC), and significantly lower levels of the glial fibrillary acidic protein (GFAP). Consistently, stimulated cells developed pronounced neuronal morphologies with significantly longer dendritic processes and larger cell bodies than non-stimulated controls. Taken together, the experimental evidence shows that the application of an electrical stimulation designed based on retinal development can be implemented to direct and enhance retinal differentiation of mRPCs, suggesting a role for biomimetic electrical stimulation in directing progenitor cells toward neural fates.

Translating Materials Design to the Clinic

Stretchable Polymeric Multielectrode Array for Conformal Neural Interfacing

A highly stretchable neural interface of concurrent robust electrical and mechanical properties is developed with a conducting polymer film as the sole conductor for both electrodes and leads. This neural interface offers the benefits of conducting polymer electrodes in a demanding stretchable format, including low electrode impedance and high charge-injection capacity, due to large electroactive surface area of the electrode.

Enhancing Tumor Cell Response to Chemotherapy Through Nanoparticle-mediated Codelivery of SiRNA and Cisplatin Prodrug

Cisplatin and other DNA-damaging chemotherapeutics are widely used to treat a broad spectrum of malignancies. However, their application is limited by both intrinsic and acquired chemoresistance. Most mutations that result from DNA damage are the consequence of error-prone translesion DNA synthesis, which could be responsible for the acquired resistance against DNA-damaging agents. Recent studies have shown that the suppression of crucial gene products (e.g., REV1, REV3L) involved in the error-prone translesion DNA synthesis pathway can sensitize intrinsically resistant tumors to chemotherapy and reduce the frequency of acquired drug resistance of relapsed tumors. In this context, combining conventional DNA-damaging chemotherapy with siRNA-based therapeutics represents a promising strategy for treating patients with malignancies. To this end, we developed a versatile nanoparticle (NP) platform to deliver a cisplatin prodrug and REV1/REV3L-specific siRNAs simultaneously to the same tumor cells. NPs are formulated through self-assembly of a biodegradable poly(lactide-coglycolide)-b-poly(ethylene glycol) diblock copolymer and a self-synthesized cationic lipid. We demonstrated the potency of the siRNA-containing NPs to knock down target genes efficiently both in vitro and in vivo. The therapeutic efficacy of NPs containing both cisplatin prodrug and REV1/REV3L-specific siRNAs was further investigated in vitro and in vivo. Quantitative real-time PCR results showed that the NPs exhibited a significant and sustained suppression of both genes in tumors for up to 3 d after a single dose. Administering these NPs revealed a synergistic effect on tumor inhibition in a human Lymph Node Carcinoma of the Prostate xenograft mouse model that was strikingly more effective than platinum monotherapy.

High-throughput Methods for Screening Polymeric Transfection Reagents

The clinical success of gene therapy requires the development of a safe and efficient delivery system for DNA. Cationic polymers are nonviral vectors that can associate electrostatically with plasmid DNA to form nanocomplexes. In some cases, this is sufficient for cellular uptake and transfection, although the precise mechanisms by which polymers facilitate gene delivery remain unclear. A robust and reliable method to screen for efficacy is essential for the development of effective polycationic transfection reagents. Numerous parameters must be controlled and optimized, such as polymer structure, polymer-DNA-binding conditions (mixing method, pH, ionic strength, incubation time, concentrations, ratios), transfection media (type, serum content), DNA dose and incubation time with the cells, cell specificity, and assay conditions. In this protocol, we describe a high-throughput method for assessing polymer-mediated transfection. The technique uses 96-well plates, which allows many transfection parameters to be varied and optimized in parallel. Hundreds of polymers can be tested in quadruplicate in a single day and the technique can easily be automated to efficiently and reproducibly test large material libraries. One limitation is that many plate types, solutions, and equipment must be stocked and sterilized. Moreover, because all polymers are processed simultaneously in very small volumes, it is difficult to validate each step for each polymer to ensure solution uniformity and adequate polymer-DNA complexation. Despite these drawbacks, this high-throughput screening method has already been used successfully in the development of efficient polycation vectors.

Waiting
simple hit counter