JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

In JoVE (1)

Other Publications (3)

Articles by Tzu-Hsing Kuo in JoVE

 JoVE Immunology and Infection

Quantitative Measurement of the Immune Response and Sleep in Drosophila

1Center for Sleep and Circadian Neurobiology, University of Pennsylvania Perelman School of Medicine


JoVE 4355

To understand a link between the immune response and behavior, we describe a method to measure locomotor behavior in Drosophila during bacterial infection as well as the ability of flies to mount an immune response by monitoring survival, bacterial load, and real-time activity of a key regulator of innate immunity, NFκB.

Other articles by Tzu-Hsing Kuo on PubMed

Human Hepatitis B Viral E Antigen Interacts with Cellular Interleukin-1 Receptor Accessory Protein and Triggers Interleukin-1 Response

Human hepatitis B virus (HBV) can cause acute and chronic hepatitis, cirrhosis, and hepatocellular carcinoma. HBV e antigen (HBeAg), a secreted protein and not required for viral replication, is thought to play an immunoregulatory role during viral infection. However, the functional involvement of HBeAg in host immune response has not been fully elucidated. We report in this study that HBeAg can bind to interleukin-1 receptor accessory protein (IL-1RAcP). Interleukin-1 (IL-1) plays an important role in inflammation and regulation of immune response, and membrane form of IL-1RAcP (mIL-1RAcP) is an essential component of trimeric IL-1/IL-1 receptor/mIL-1RAcP complex. We show that glutathione S-transferase- or polyhistidine-tagged recombinant HBeAg can interact with endogenous mIL-1RAcP in vitro. Purified (His)6-HBeAg added in the culture medium can interact with overexpressed FLAG-tagged mIL-1RAcP in vivo. Indirect immunofluorescence and confocal microscopy show that HBeAg colocalizes with mIL-1RAcP on the cell surface. Furthermore, HBeAg is able to induce the interaction of IL-1 receptor I (IL-1RI) with mIL-1RAcP and trigger the recruitment of adaptor protein myeloid differentiation factor 88 (MyD88) to the IL-1RI/mIL-1RAcP complex. Assembly and activation of IL-1RI/mIL-1RAcP signaling complex by HBeAg can activate downstream NF-kappaB pathway through IkappaB degradation, induce NF-kappaB-dependent luciferase expression, and induce the expression of IL-1-responsive genes. Silencing of IL-1RAcP by small interfering RNA dramatically abolishes HBeAg-mediated NF-kappaB activation. These results demonstrate that HBeAg can trigger host IL-1 response by binding to mIL-1RAcP. The interaction of HBeAg with mIL-1RAcP may play an important role in modulating host immune response in acute and chronic HBV infection.

Sorptive Removal of Tetracycline from Water by Palygorskite

Extensive use of pharmaceuticals and growth hormone in farm animal and live stocks has resulted in their frequent detection in soils, groundwater, and wastewater. The fate and transport of these compounds are strongly affected by their sorptive behavior to the soil minerals and humic materials. In this research, we conducted the sorption of tetracycline (TC), a common antibiotic, on palygorskite (PFL-1), a fibrous clay mineral of high surface area and high sorptivity towards organic compounds. The results showed that the sorption capacity of TC on PFL-1 was as high as 210 mmol/kg at pH 8.7. The sorption was relatively fast and reached equilibrium in 2h. Solution pH and ionic strength had significant effects on TC sorption. The sorption of TC by palygorskite is endothermic and the free energy of sorption is in the range of -10 to -30 kJ/mol, suggesting a strong physical sorption. The X-ray diffraction patterns before and after TC sorption revealed no changes in d-spacing and intensity under different pH and initial TC concentrations, indicating that the sorbed TC molecules are on the external surface of the mineral in contrast to intercalation of TC into swelling clays, such as montmorillonite. The small positive value of entropy change suggested that TC molecules are in disordered arrangement on palygorskite surfaces. Surface sorption of TC on PFL-1 is further supported by the derivative of gravimetric analysis and by the calculation of the amount of TC sorption normalized to the surface area. The results suggest that palygorskite could be a good candidate to remove TC from wastewater containing higher amounts of TC.

Sleep Triggered by an Immune Response in Drosophila is Regulated by the Circadian Clock and Requires the NFkappaB Relish

Immune challenge impacts behavior in many species. In mammals, this adaptive behavior is often manifested as an increase in sleep. Sleep has therefore been proposed to benefit the host by enhancing immune function and thereby overcome the challenge. To facilitate genetic studies on the relationship between sleep and immune function, we characterized the effect of the immune response on sleep in Drosophila melanogaster. Behavioral features of sleep as well as the innate immune response signaling pathways are well characterized in flies and are highly conserved in mammals.

Waiting
simple hit counter