Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Ammonium Sulfate: Sulfuric acid diammonium salt. It is used in Chemical fractionation of proteins.
 JoVE Environment

Development of Sulfidogenic Sludge from Marine Sediments and Trichloroethylene Reduction in an Upflow Anaerobic Sludge Blanket Reactor

1Bioprocesses Department, Laboratory of Environmental Biotechnology, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, 2Laboratory of Molecular Biology, Escuela Superior de Medicina, Instituto Politécnico Nacional


JoVE 52956

 JoVE Biology

The c-FOS Protein Immunohistological Detection: A Useful Tool As a Marker of Central Pathways Involved in Specific Physiological Responses In Vivo and Ex Vivo

1Sorbonne Paris Cité, Laboratory “Hypoxia & Lung” EA2363, University Paris 13, 2UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Universités, 3Laboratory of Excellence GR-Ex, 4Laboratory MOVE (EA 6314), University of Poitiers


JoVE 53613

 Science Education: Essentials of Analytical Chemistry

Method of Standard Addition

JoVE Science Education

Source: Laboratory of Dr. Paul Bower - Purdue University

The method of standard additions is a quantitative analysis method, which is often used when the sample of interest has multiple components that result in matrix effects, where the additional components may either reduce or enhance the analyte absorbance signal. That results in significant errors in the analysis results. Standard additions are commonly used to eliminate matrix effects from a measurement, since it is assumed that the matrix affects all of the solutions equally. Additionally, it is used to correct for the chemical phase separations performed in the extraction process. The method is performed by reading the experimental (in this case fluorescent) intensity of the unknown solution and then by measuring the intensity of the unknown with varying amounts of known standard added. The data are plotted as fluorescence intensity vs. the amount of the standard added (the unknown itself, with no standard added, is plotted ON the y-axis). The least squares line intersects the x-axis at the negative of the concentration of the unknown, as shown in Figure 1. Figure 1

 JoVE Biology

Automated Hydrophobic Interaction Chromatography Column Selection for Use in Protein Purification

1College of Nursing, Interdisciplinary Life Sciences Research Laboratory, Seattle University, 2College of Science and Engineering, Interdisciplinary Life Sciences Research Laboratory, Seattle University


JoVE 3060

 JoVE Bioengineering

Cell Labeling and Targeting with Superparamagnetic Iron Oxide Nanoparticles

1Division of Cardiovascular Diseases, Mayo Clinic, 2Division of Engineering, Mayo Clinic, 3School of Medicine, Pharmacy and Health, Durham University, 4Regional Center for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 5Mayo Clinic College of Medicine, Mayo Clinic


JoVE 53099

 JoVE Bioengineering

Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles

1Department of Bioengineering, University of Illinois at Urbana-Champaign, 2Department of Nuclear, Plasma and Radiological Engineering, University of Illinois at Urbana-Champaign, 3Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 4Program of Study and Control of Tropical Diseases (PECET), University of Antioquia, 5Sealy Center for Vaccine Development, University of Texas Medical Branch, 6WHO Collaborating Center for Vaccine Research, Evaluation and Training on Emerging Infectious Diseases, University of Texas Medical Branch, 7Beckman Institute, University of Illinois at Urbana-Champaign


JoVE 52951

 Science Education: Essentials of General Chemistry

Determining the Solubility Rules of Ionic Compounds

JoVE Science Education

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

An ionic compound's solubility can be determined via qualitative analysis. Qualitative analysis is a branch of analytical chemistry that uses chemical properties and reactions to identify the cation or anion present in a chemical compound. While the chemical reactions rely on known solubility rules, those same rules can be determined by identifying the products that form. Qualitative analysis is not typically done in modern industrial chemistry labs, but it can be used easily in the field without the need of sophisticated instrumentation. Qualitative analysis also focuses on understanding ionic and net ionic reactions as well as organizing data into a flow chart to explain observations and make definitive conclusions. Many cations have similar chemical properties, as do the anion counterparts. Correct identification requires careful separation and analysis to systematically identify the ions present in a solution. It is important to understand acid/base properties, ionic equilibria, redox reactions, and pH properties to identify ions successfully. While there is a qualitative test for virtually every elemental and polyatomic ion, the identification process typically begi

 JoVE Medicine

Quantitative Mass Spectrometric Profiling of Cancer-cell Proteomes Derived From Liquid and Solid Tumors

1Institute of Pathology, University Medical Center, Göttingen, 2Department of Hematology/Oncology, Goethe University of Frankfurt, 3Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 4Bioanalytics, Institute of Clinical Chemistry, University Medical Center, Göttingen, 5German Cancer Consortium, 6German Cancer Research Center


JoVE 52435

 JoVE Developmental Biology

Rearing the Fruit Fly Drosophila melanogaster Under Axenic and Gnotobiotic Conditions

1Department of Plant and Wildlife Sciences, Brigham Young University, 2Department of Entomology, Cornell University, 3Department of Molecular Biology and Genetics, Cornell University, 4Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 5Biological Sciences, SUNY Oswego


JoVE 54219

 JoVE Biology

Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays

1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 2Eck Institute for Global Health, University of Notre Dame, 3Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 4INRS-Institut Armand-Frappier, 5Department of Biology, Indiana University, 6Department of Biological Sciences, University of Notre Dame


JoVE 52338

 JoVE Developmental Biology

Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients

1Department of Biomedical Science, The Bateson Centre, University of Sheffield, 2Institute of Genetic Medicine, Newcastle University, 3Department of Cardiovascular Science, The Bateson Centre, University of Sheffield, 4School of Biochemistry, University of Bristol, 5Biology Department, University of York


JoVE 53162

 JoVE Immunology and Infection

Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins

1Department of Biology, San Diego State University, 2Computational Science Research Center, San Diego State University, 3Bioinformatics and Medical Informatics Research Center, San Diego State University, 4Department of Mathematics and Statistics, San Diego State University, 5Department of Computer Science, San Diego State University, 6Mathematics and Computer Science Division, Argonne National Laboratory, 7SPARC Committee, Broad Institute


JoVE 52854

12345678916
More Results...
Waiting
simple hit counter