Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Animals, Genetically Modified: Animals whose Genome has been altered by Genetic engineering, or their offspring.
 JoVE Neuroscience

Modeling Astrocytoma Pathogenesis In Vitro and In Vivo Using Cortical Astrocytes or Neural Stem Cells from Conditional, Genetically Engineered Mice

1Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 2Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 3Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, 4Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, 5Biological and Biomedical Sciences Program, University of North Carolina School of Medicine, 6Department of Radiation Oncology, Emory University School of Medicine, 7Department of Neurology, Neurosciences Center, University of North Carolina School of Medicine


JoVE 51763

 Science Education: Essentials of Lab Animal Research

Fundamentals of Breeding and Weaning

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and rats in-house to reduce costs and increase research options. When breeding in the animal facility, researchers are able to manipulate the genetics of the animals, time the pregnancies to meet the needs of the research, and work with embryos and neonates as required. Mice and rats can be bred in a variety of schemes and methods. Technical procedures, such as the use of vaginal cytology, visualization of the vaginal area, and observation of copulatory plugs, have been developed to assist with the synchronization of breeding to correspond to research requirements. This manuscript is an overview of the basic fundamentals of mouse and rat breeding and technical procedures used. More detailed descriptions of the complex breeding schemes, and the full description of the methods for vaginal cytology, are available in the list of references.

 JoVE Developmental Biology

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich


JoVE 54018

 JoVE Bioengineering

Gene Transfection toward Spheroid Cells on Micropatterned Culture Plates for Genetically-modified Cell Transplantation

1Graduate School of Medicine, Laboratory of Clinical Biotechnology, The University of Tokyo, 2Graduate School of Engineering, Department of Materials Engineering, The University of Tokyo, 3Graduate School of Engineering, Department of Bioengineering, The University of Tokyo


JoVE 52384

 JoVE Neuroscience

In vivo Optogenetic Stimulation of the Rodent Central Nervous System

1Department of Psychiatry, University of Pittsburgh Medical Center, 2Department of Bioengineering, Stanford University, 3Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 4Department of Neurobiology and Behavior, Cornell University, 5Department of Psychiatry and Behavioral Sciences, Stanford University


JoVE 51483

 Science Education: Essentials of Lab Animal Research

Rodent Identification II

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Animal records must be accurately maintained to ensure that data collection is correct. Records range from maintaining information on cage cards to having a detailed database with all of the relevant information on each animal. The primary component of recordkeeping is the individual identification of research animals. There are a variety of methods suitable for identifying mice and rats. This video describes the procedural techniques for tattooing, microchip placement, and temporary identification methods, and also explores the benefits of each.

 JoVE Behavior

Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice

1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences


JoVE 50871

 Science Education: Essentials of Lab Animal Research

Basic Care Procedures

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Mice and rats account for over 90% of the animals used for biomedical research. The proper care of these research animals is critical to the outcome of experiments. There are general procedures that apply to the majority of these mice and rats, but some of the animals, such as the immunocompromised ones, require additional steps to be taken to sustain them for experimentation. Commonly used immunocompromised mice include those that have naturally occurred in inbred mice and those that have been created through genetic engineering. The first immunocompromised mice used in research were "nude" mice. The BALB/c Nude (nu) mouse was discovered in 1966, within a BALB/c colony that was producing mice lacking both hair and a thymus. These athymic mice have an inhibited immune system that is devoid of T cells. The value of this animal was soon discovered for the use in studies of microbial infections, immune deficiencies, and autoimmunity. Although not as commonly used as the nude mouse, there is also a nude rat. The nude rat is T cell deficient and shows depleted cell populations in thymus-dependent areas of peripheral lymphoid organs. Another naturally occurring immune deficient mouse is the severe comb

 JoVE Developmental Biology

Generation of Parabiotic Zebrafish Embryos by Surgical Fusion of Developing Blastulae

1Division of Hematology/Oncology, Boston Children’s Hospital, 2Harvard Medical School, 3Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, 4Harvard Stem Cell Institute, 5Broad Institute of Massachusetts Institute of Technology, 6Howard Hughes Medical Institute, 7Division of Hematologic Malignancies, Dana-Farber Cancer Institute


JoVE 54168

12345678978
More Results...
Waiting
simple hit counter