JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of Developmental Biology

You have subscription access to videos in this collection through your user account.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
 JoVE Clinical and Translational Medicine

Near Infrared Optical Projection Tomography for Assessments of β-cell Mass Distribution in Diabetes Research

1Umeå Centre for Molecular Medicine, Umeå University, 2Cell Transplant Center, Diabetes Research Institute, University of Miami,, 3EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Catalan Institute of Research and Advanced Studies, 4Dept. of Computing Science, Umeå University


JoVE 50238

We describe the adaptation of optical projection tomography (OPT)1 to imaging in the near infrared spectrum, and the implementation of a number of computational tools. These protocols enable assessments of pancreatic β-cell mass (BCM) in larger specimens, increase the multichannel capacity of the technique and increase the quality of OPT data.

 JoVE Clinical and Translational Medicine

Assessing Replication and Beta Cell Function in Adenovirally-transduced Isolated Rodent Islets

1Department of Pediatrics, Indiana University School of Medicine, 2Department of Cellular & Integrative Physiology, Indiana University School of Medicine


JoVE 4080

This protocol allows one to identify factors that modulate functional beta cell mass to find potential therapeutic targets for the treatment of diabetes. The protocol consists of a streamlined method to assess islet replication and beta cell function in isolated rat islets following manipulation of gene expression with adenoviruses.

 JoVE Clinical and Translational Medicine

Staining Protocols for Human Pancreatic Islets

1Department of Pathology, Immunology, and Laboratory Medicine, University of Florida


JoVE 4068

This video demonstrates procedures for characterization of human pancreatic islets using hematoxylin and eosin (H&E) and immunohistochemistry (IHC). Pancreatic sections from head, body, and tail regions are stained by both H&E and IHC to determine islet endocrine composition (insulin, glucagon, and pancreatic polypeptide), cell replication (Ki67), and inflammatory infiltrates (H&E, CD3). The uncinate region is localized using IHC for pancreatic polypeptide.

 JoVE Biology

A Method for Mouse Pancreatic Islet Isolation and Intracellular cAMP Determination

1Department of Nutrional Sciences, University of Wisconsin-Madison, 2Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, 3School of Pharmacy, University of Waterloo


JoVE 50374

Assaying in vitro β-cell function using isolated mouse islets of Langerhans is an important component in the study of diabetes pathophysiology and therapeutics. While many downstream applications are available, this protocol specifically describes the measurement of intracellular cyclic adenosine monophosphate (cAMP) as an essential parameter determining β-cell function.

 JoVE Biology

Computer-assisted Large-scale Visualization and Quantification of Pancreatic Islet Mass, Size Distribution and Architecture

1Department of Medicine, University of Chicago, 2Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 3Department of Surgery, University of Chicago, 4Diabetes Division, University of Massachusetts


JoVE 2471

Novel computer-assisted methods of large-scale procurement and analysis of immunohistochemically stained pancreatic specimens are described: (1) Virtual Slice capture of the entire section; (2) Mass analysis of large-scale data; (3) Reconstruction of 2D Virtual Slices; (4) 3D islet mapping; and (5) Mathematical analysis.

 JoVE Clinical and Translational Medicine

A Model of Chronic Nutrient Infusion in the Rat

1Montreal Diabetes Research Center, CRCHUM, 2Department of Medicine, University of Montreal


JoVE 50267

A protocol for chronic infusions of glucose and Intralipid in rats is described. This model can be used to study the impact of nutrient excess on organ function and physiological parameters.

 JoVE Biology

Immunofluorescent Detection of Two Thymidine Analogues (CldU and IdU) in Primary Tissue

1Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Institute of Diabetes Obesity and Metabolism, Institute for Regenerative Medicine, Department of Pediatrics, University of Pennsylvania-School of Medicine


JoVE 2166

We have derived a strategy to detect sequential incorporation of thymidine analogues (CldU and IdU) into tissues of adult mice to quantify two successive rounds of cell division. This strategy is useful to detect cell turnover of long-lived tissues, oncogenic transformation, or transit-amplifying cells.

 JoVE Biology

A Quantitative Assay for Insulin-expressing Colony-forming Progenitors

1Department of Biotechnology & Bioinformatics, California State University Channel Islands, 2Department of Diabetes, Endocrinology and Metabolism, Beckman Research Institute of City of Hope, 3The Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope


JoVE 3148

A three-dimensional clonogenic assay that allows pancreatic-like progenitors to differentiate into insulin-expressing colonies is described. This method takes advantage of semi-solid media containing methylcellulose, Matrigel and growth factors, in which single progenitors proliferate and differentiate in vitro, permitting quantification of the number of functional progenitors in a population.

 JoVE Neuroscience

Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube

1Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical Center, 2Department of Pharmacology, Center for Stem Cell Biology, Vanderbilt University Medical Center, 3Vanderbilt University Medical Center


JoVE 4134

Isolation of embryonic neural crest from the neural tube facilitates the use of in vitro methods for studying migration, self-renewal, and multipotency of neural crest.

 JoVE Clinical and Translational Medicine

Basic Surgical Techniques in the Göttingen Minipig: Intubation, Bladder Catheterization, Femoral Vessel Catheterization, and Transcardial Perfusion

1Department of Neurosurgery, Aarhus University Hospital, 2Department of Neurobiology, Institute of Anatomy, Faculty of Health Sciences, Aarhus University, 3Positron Emission Tomography (PET) Centre, Aarhus University Hospital


JoVE 2652

The use of domestic and miniature pigs in science has increased significantly in recent years. By demonstrating how to perform intubation, transurethral bladder catheterization, femoral artery and vein catheterization, as well as transcardial perfusion, we aim to further increase the value of Göttingen minipigs in biomedical research.

More Results...
Waiting
simple hit counter