You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology


Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Biomedical Engineering: Application of principles and practices of engineering science to biomedical research and health care.
 JoVE Bioengineering

Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization

1Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 2Department of Biomedical Engineering, Case Western Reserve University, 3Department of Electrical Engineering and Computer Science, Case Western Reserve University

JoVE 50078

A method is discussed by which the in vivo mechanical behavior of stimuli-responsive materials is monitored as a function of time. Samples are tested ex vivo using a microtensile tester with environmental controls to simulate the physiological environment. This work further promotes understanding the in vivo behavior of our material.

 JoVE Bioengineering

Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

1Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University, 2NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University, 3Department Electronics, Information and Bioengineering, Politecnico di Milano, 4Department of Chemical and Materials Engineering, University of Alberta, 5National Institute for Nanotechnology, National Research Council (Canada), 6Department of Chemical and Biochemical Engineering, University of Western Ontario

JoVE 52812

In this work, we present a technique for the rapid fabrication of living vascular tissues by direct culturing of collagen, smooth muscle cells and endothelial cells. In addition, a new protocol for the mechanical characterization of engineered vascular tissues is described.

 JoVE Immunology and Infection

Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

1Department of Health Science & Technology, Cartilage Engineering & Regeneration, 2Biomaterials Department, Innovent e.V.

JoVE 50632

A bioprinter was used to create patterned hydrogels based on a sacrificial mold. The poloxamer mold was backfilled with a second hydrogel and then eluted, leaving voids which were filled with a third hydrogel. This method uses fast elution and good printability of poloxamer to generate complex architectures from biopolymers.

 JoVE Bioengineering

Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

1Biomedical Engineering, Wayne State University

JoVE 51517

This protocol combines electrospinning and microspheres to develop tissue engineered scaffolds to direct neurons. Nerve growth factor was encapsulated within PLGA microspheres and electrospun into Hyaluronic Acid (HA) fibrous scaffolds. The protein bioactivity was tested by seeding the scaffolds with primary chick Dorsal Root Ganglia and culturing for 4-6 days.

 JoVE Bioengineering

Viral Nanoparticles for In vivo Tumor Imaging

1Department of Biomedical Engineering, Case Western Reserve University, 2Department of Biomedical Engineering, Radiology, and Materials Science and Engineering, Case Western Reserve University

JoVE 4352

Plant viral nanoparticles (VNPs) are promising platforms for applications in biomedicine. Here, we describe the procedures for plant VNP propagation, purification, characterization, and bioconjugation. Finally, we show the application of VNPs for tumor homing and imaging using a mouse xenograft model and fluorescence imaging.

 JoVE Bioengineering

Isolation and Characterization Of Chimeric Human Fc-expressing Proteins Using Protein A Membrane Adsorbers And A Streamlined Workflow

1Department of Chemical and Biomolecular Engineering, Ohio University, 2Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, 3Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School

JoVE 51023

Compared with traditional affinity chromatography using protein A agarose bead-packed columns, protein A membrane adsorbers can significantly speed laboratory-scale isolation of antibodies and other Fc fragment-expressing proteins. Appropriate analysis and quantification methods can further accelerate protein processing, allowing isolation/characterization to be completed in one workday, instead of 20+ work hours.

 JoVE Bioengineering

Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations

1Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University

JoVE 50125

A methodology to estimate ventricular fiber orientations from in vivo images of patient heart geometries for personalized modeling is described. Validation of the methodology performed using normal and failing canine hearts demonstrate that that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.

 JoVE Bioengineering

Design and Construction of Artificial Extracellular Matrix (aECM) Proteins from Escherichia coli for Skin Tissue Engineering

1School of Materials Science and Engineering, Nanyang Technological University

JoVE 52845

Recombinant technologies have enabled material designers to create novel artificial proteins with customized functionalities for tissue engineering applications. For example, artificial extracellular matrix proteins can be designed to incorporate structural and biological domains derived from native ECMs. Here, we describe the construction and purification of aECM proteins containing elastin-like repeats.

 JoVE Biology

Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules

1Department of Chemical and Biological Engineering, Princeton University

JoVE 50476

We developed computational de novo protein design methods capable of tackling several important areas of protein design. To disseminate these methods we present Protein WISDOM, an online tool for protein design ( Starting from a structural template, design of monomeric proteins for increased stability and complexes for increased binding affinity can be performed.

 JoVE Bioengineering

Protocol for Relative Hydrodynamic Assessment of Tri-leaflet Polymer Valves

1Tissue Engineered Mechanics, Imaging and Materials Laboratory, Department of Biomedical Engineering, Florida International University, 2Department of Mechanical and Aerospace Engineering, University of Florida, 3College of Medicine, University of Florida, 4King Faisal Specialty Hospital and Research Center, Jeddah, Saudi Arabia

JoVE 50335

There has been renewed interest in developing polymer valves. Here, the objectives are to demonstrate the feasibility of modifying a commercial pulse duplicator to accommodate tri-leaflet geometries and to define a protocol to present polymer valve hydrodynamic data in comparison to native and prosthetic valve data collected under near-identical conditions.

 JoVE Bioengineering

Micro-particle Image Velocimetry for Velocity Profile Measurements of Micro Blood Flows

1Department of Chemical and Biological Engineering, University of Ottawa, 2Department of Mechanical Engineering, University of Ottawa

JoVE 50314

Micro-particle image velocimetry (μPIV) is used to visualize paired images of micro particles seeded in blood flows which are cross-correlated to give an accurate velocity profile. Shear rate, maximum velocity, velocity profile shape, and flow rate, each of which has clinical applications, can be derived from these measurements.

 JoVE Bioengineering

Microfabrication of Nanoporous Gold Patterns for Cell-material Interaction Studies

1Department of Electrical and Computer Engineering, University of California, Davis, 2Department of Chemical Engineering and Materials Science, University of California, Davis, 3Department of Biomedical Engineering, University of California, Davis

JoVE 50678

We report on techniques to micropattern nanoporous gold thin films via stencil printing and photolithography, as well as methods to culture cells on the microfabricated patterns. In addition, we describe image analysis methods to characterize morphology of the material and the cultured cells using scanning electron and fluorescence microscopy techniques.

 JoVE Bioengineering

Postproduction Processing of Electrospun Fibres for Tissue Engineering

1Materials Science and Engineering, University of Sheffield, 2Department of Biomedical Science, University of Sheffield, 3Department of Chemistry, University of Sheffield

JoVE 4172

Electrospun scaffolds can be processed post production for tissue engineering applications. Here we describe methods for spinning complex scaffolds (by consecutive spinning), for making thicker scaffolds (by multi-layering using heat or vapour annealing), for achieving sterility (aseptic production or sterilisation post production) and for achieving appropriate biomechanical properties.

 JoVE Bioengineering

Electrospun Fibrous Scaffolds of Poly(glycerol-dodecanedioate) for Engineering Neural Tissues From Mouse Embryonic Stem Cells

1Department of Biomedical Engineering, Florida International University

JoVE 51587

Synthesis and fabrication of electrospun long fibers spanning a larger deposit area via a newly designed collector from a novel biodegradable polymer named poly(glycerol-dodecanoate) (PGD) was reported. The fibers were able to support the growth of cells derived from mouse pluripotent stem cells.

 JoVE Medicine

Generation of Alginate Microspheres for Biomedical Applications

1Department of Chemical and Biological Engineering, Illinois Institute of Technology, 2Department of Biomedical Engineering, Illinois Institute of Technology, 3Department of Biomedical Engineering, University of California at Irvine, 4Wake Forest Institute for Regenerative Medicine and Department of Biomedical Engineering, Wake Forest University Health Sciences, 5Research Service, Hines Veterans Administration Hospital

JoVE 3388

In the following sections, we outline procedures for the preparation of alginate microspheres for use in biomedical applications. We specifically illustrate a technique for creating multilayered alginate microspheres for the dual purpose of cell and protein encapsulation as a potential treatment for type 1 diabetes.

 JoVE Bioengineering

Engineering Platform and Experimental Protocol for Design and Evaluation of a Neurally-controlled Powered Transfemoral Prosthesis

1Joint Department of Biomedical Engineering, North Carolina State University & University of North Carolina at Chapel Hill, 2Department of Physical Medicine and Rehabilitation, University of North Carolina School of Medicine, 3Atlantic Prosthetics & Orthotics, LLC

JoVE 51059

Neural-machine interfaces (NMI) have been developed to identify the user's locomotion mode. These NMIs are potentially useful for neural control of powered artificial legs, but have not been fully demonstrated. This paper presented (1) our designed engineering platform for easy implementation and development of neural control for powered lower limb prostheses and (2) an experimental setup and protocol in a laboratory environment to evaluate neurally-controlled artificial legs on patients with lower limb amputations safely and efficiently.

 JoVE Bioengineering

ECM Protein Nanofibers and Nanostructures Engineered Using Surface-initiated Assembly

1Department of Biomedical Engineering, Carnegie Mellon University, 2Department of Materials Science and Engineering, Carnegie Mellon University

JoVE 51176

A method to obtain nanofibers and complex nanostructures from single or multiple extracellular matrix proteins is described. This method uses protein-surface interactions to create free-standing protein-based materials with tunable composition and architecture for use in a variety of tissue engineering and biotechnology applications.

 JoVE Bioengineering

Graphene Coatings for Biomedical Implants

1Department of Physics, Clemson University, 2Department of Pharmacology and Toxicology, East Carolina University, 3Department of Bioengineering, Clemson University, 4Center for Optical Materials Science and Engineering Technologies, Clemson University

JoVE 50276

Graphene offers potential as a coating material for biomedical implants. In this study we demonstrate a method for coating nitinol alloys with nanometer thick layers of graphene and determine how graphene may influence implant response.

 JoVE Bioengineering

Fabricating Complex Culture Substrates Using Robotic Microcontact Printing (R-µCP) and Sequential Nucleophilic Substitution

1Department of Biomedical Engineering, University of Wisconsin, Madison, 2Department of Mechanical Engineering, University of Wisconsin, Madison

JoVE 52186

Cell culture substrates functionalized with microscale patterns of biological ligands have immense utility in the field of tissue engineering. Here, we demonstrate the versatile and automated manufacture of tissue culture substrates with multiple, micropatterned poly(ethylene glycol) brushes presenting orthogonal chemistries that enable spatially precise and site-specific immobilization of biological ligands.

 JoVE Bioengineering

Engineering Fibrin-based Tissue Constructs from Myofibroblasts and Application of Constraints and Strain to Induce Cell and Collagen Reorganization

1Department of Biomedical Engineering, Eindhoven University of Technology

JoVE 51009

This model system starts from a myofibroblast-populated fibrin gel that can be used to study endogenous collagen (re)organization real-time in a nondestructive manner. The model system is very tunable, as it can be used with different cell sources, medium additives, and can be adapted easily to specific needs.

 JoVE Bioengineering

Human Cartilage Tissue Fabrication Using Three-dimensional Inkjet Printing Technology

1Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 2Stemorgan Inc., 3Institute of Advanced Study, Technical University of Munich, 4Institute of Virology, School of Medicine, Wuhan University, 5Department of Molecular and Experimental Medicine, The Scripps Research Institute, 6Research Institute for Biomedical Sciences, Tokyo University of Science

JoVE 51294

The methods described in this paper show how to convert a commercial inkjet printer into a bioprinter with simultaneous UV polymerization. The printer is capable of constructing 3D tissue structure with cells and biomaterials. The study demonstrated here constructed a 3D neocartilage.

 JoVE Bioengineering

Encapsulation of Cardiomyocytes in a Fibrin Hydrogel for Cardiac Tissue Engineering

1Department of Biomedical Engineering, Tufts University

JoVE 3251

We describe the isolation of neonatal cardiomyocytes and the preparation of the cells for encapsulation in fibrin hydrogel constructs for tissue engineering. We describe methods for analyzing the tissue engineered myocardium after the culture period including active force generated upon electrical stimulation and cell viability and immunohistological staining.

 JoVE Neuroscience

Whole Cell Patch Clamp for Investigating the Mechanisms of Infrared Neural Stimulation

1Biotactical Engineering, Faculty of Engineering and Industrial Science, Swinburne University of Technology, 2Department of Otolaryngology, The University of Melbourne

JoVE 50444

Infrared nerve stimulation has been proposed as an alternative to electrical stimulation in a range of nerve types, including those associated with the auditory system. This protocol describes a patch clamp method for studying the mechanism of infrared nerve stimulation in a culture of primary auditory neurons.

 JoVE Bioengineering

Generation and Recovery of β-cell Spheroids From Step-growth PEG-peptide Hydrogels

1Department of Biomedical Engineering, Purdue School of Engineering and Technology, Indiana University - Purdue University at Indianapolis

JoVE 50081

The following protocol provides techniques for encapsulating pancreatic β-cells in step-growth PEG-peptide hydrogels formed by thiol-ene photo-click reactions. This material platform not only offers a cytocompatible microenvironment for cell encapsulation, but also permits user-controlled rapid recovery of cell structures formed within the hydrogels.

 JoVE Bioengineering

An Injectable and Drug-loaded Supramolecular Hydrogel for Local Catheter Injection into the Pig Heart

1Institute for Complex Molecular Systems, Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology, 2Department of Cardiology, Division Heart and Lungs, Interuniversity Cardiology Institute of the Netherlands (ICIN), University Medical Center Utrecht

JoVE 52450

Supramolecular hydrogelators based on ureido-pyrimidinones allow full control over the macroscopic gel properties and the sol–gel switching behavior using pH. Here, we present a protocol for formulating and injecting such a supramolecular hydrogelator via a catheter delivery system for local delivery directly in relevant areas in the pig heart.

 JoVE Bioengineering

Engineering a Bilayered Hydrogel to Control ASC Differentiation

1Department of Extremity Trauma Research and Regenerative Medicine, United States Army Institute of Surgical Research, 2Department of Biomedical Engineering, The University of Texas at Austin

JoVE 3953

This protocol focuses on utilizing the inherent ability of stem cells to take cue from their surrounding extracellular matrix and be induced to differentiate into multiple phenotypes. This methods manuscript extends our description and characterization of a model utilizing a bilayered hydrogel, composed of PEG-fibrin and collagen, to simultaneously co-differentiate adipose-derived stem cells1.

 JoVE Neuroscience

Design, Surface Treatment, Cellular Plating, and Culturing of Modular Neuronal Networks Composed of Functionally Inter-connected Circuits

1Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 2Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 3School of Electrical Engineering, Tel-Aviv University, 4School of Physics and Astronomy, Tel-Aviv University, 5Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova

JoVE 52572

This manuscript describes a protocol to grow in vitro modular networks consisting of spatially confined, functionally inter-connected neuronal circuits. A polymeric mask is used to pattern a protein layer to promote cellular adhesion over the culturing substrate. Plated neurons grow on coated areas establishing spontaneous connections and exhibiting electrophysiological activity.

 JoVE Bioengineering

Characteristics of Precipitation-formed Polyethylene Glycol Microgels Are Controlled by Molecular Weight of Reactants

1Department of Biomedical Engineering, The University of Akron, 2Saint Vincent Saint Mary's High School

JoVE 51002

This work describes the formation of poly(ethylene glycol) (PEG) microgels via a photopolymerized precipitation reaction. Increasing the PEG molecular weight increased microgel diameter and swelling ratio. Simple adaptations to the PEG microgel precipitation reaction are explored for future applications of microgels as drug delivery vehicles and tissue engineering scaffolds.

 JoVE Neuroscience

Closed-loop Neuro-robotic Experiments to Test Computational Properties of Neuronal Networks

1Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia

JoVE 52341

In this paper, an experimental framework to perform closed-loop experiments is presented, in which information processing (i.e., coding and decoding) and learning of neuronal assemblies are studied during the continuous interaction with a robotic body.

 JoVE Chemistry

Microwave-assisted Functionalization of Poly(ethylene glycol) and On-resin Peptides for Use in Chain Polymerizations and Hydrogel Formation

1Department of Biomedical Engineering, University of Rochester, 2Department of Chemical Engineering, University of Rochester, 3Center for Musculoskeletal Research, University of Rochester Medical Center

JoVE 50890

This video will illustrate a rapid, efficient method to methacrylate poly(ethylene glycol), enabling chain polymerizations and hydrogel synthesis. It will demonstrate how to similarly introduce methacrylamide functionalities into peptides, detail common analytical methods to assess functionalization efficiency, provide suggestions for troubleshooting and advanced modifications, and demonstrate typical hydrogel characterization techniques.

 JoVE Bioengineering

Cell Co-culture Patterning Using Aqueous Two-phase Systems

1Department of Biomedical Engineering, University of Michigan, 2Department of Macromolecular Science and Engineering, University of Michigan

JoVE 50304

Aqueous two-phase systems were used to simultaneously pattern multiple populations of cells. This fast and easy method for cell patterning takes advantage of the phase separation of aqueous solutions of dextran and polyethylene glycol and the interfacial tension that exists between the two polymer solutions.

 JoVE Application Notes

3D Tissue Engineered Systems for Regenerative Approaches, Drug Discovery, and Toxicity Screening - ADVERTISEMENT

JoVE 5517

In vitro mammalian cell culture has served as an invaluable tool in cell biology for several decades. Classically, monolayer cultures of adherent cells were grown on flat and rigid two-dimensional (2D) substrates, such as polystyrene or glass. However, many cells, when isolated from tissues and placed onto stiff planar 2D cell culture surfaces, such as tissue culture plastic, become progressively flatter, divide aberrantly, and lose their differentiated phenotype1,2. While these two-dimensional cell culture studies have played a pivotal role in furthering our understanding of many biological processes, they do not emulate in vivo conditions.

 JoVE Bioengineering

Epithelial Cell Repopulation and Preparation of Rodent Extracellular Matrix Scaffolds for Renal Tissue Development

1Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, 2Department of Surgery, Feinberg School of Medicine, Northwestern University, 3Department of Biomedical Engineering, Northwestern University, 4Simpson Querrey Institute for BioNanotechnology in Medicine, Northwestern University, 5Department of Internal Medicine, University of New Mexico HSC, 6Department of Pathology, University of New Mexico HSC, 7Department of Chemical and Biological Engineering, Northwestern University, 8Chemistry of Life Processes Institute, Northwestern University, 9Department of Surgery, Jesse Brown VA Medical Center

JoVE 53271

This protocol describes decellularization of Sprague Dawley rat kidneys by antegrade perfusion of detergents through the vasculature, producing acellular renal extracellular matrices that serve as templates for repopulation with human renal epithelial cells. Recellularization and use of the resazurin perfusion assay to monitor growth is performed within specially-designed perfusion bioreactors.

 JoVE Biology

Recombineering Homologous Recombination Constructs in Drosophila

1Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, 2Department of Physiology, University of Texas Southwestern Medical Center at Dallas, 3Green Center for Systems Biology, University of Texas Southwestern Medical Center at Dallas

JoVE 50346

Homologous recombination techniques greatly advance Drosophila genetics by enabling the creation of molecularly precise mutations. The recent adoption of recombineering allows one to manipulate large pieces of DNA and transform them into Drosophila6. The methods presented here combine these techniques to rapidly generate large homologous recombination vectors.

 JoVE Bioengineering

Multi-analyte Biochip (MAB) Based on All-solid-state Ion-selective Electrodes (ASSISE) for Physiological Research

1Department of Agricultural and Biological Engineering, Birck-Bindley Physiological Sensing Facility, Purdue University, 2NASA Ames Research Center, 3Department of Chemistry, Pennsylvania State University Hazleton, 4Cooley LLP, 5NASA Life and Physical Sciences, Human Exploration and Operations Mission Directorate, NASA Headquarters

JoVE 50020

All-solid-state ion-selective electrodes (ASSISEs) constructed from a conductive polymer (CP) transducer provide several months of functional lifetime in liquid media. Here, we describe the fabrication and calibration process of ASSISEs in a lab-on-a-chip format. The ASSISE is demonstrated to have maintained a near-Nernstian slope profile after prolonged storage in complex biological media.

 JoVE Behavior

Early Metamorphic Insertion Technology for Insect Flight Behavior Monitoring

1Department of Electrical and Computer Engineering, North Carolina State University

JoVE 50901

We present a novel surgical procedure to implant electrodes in Manduca sexta during its early metamorphic stages. This technique allows mechanically stable and electrically reliable coupling with the neuromuscular tissue to study flight neurophysiology dynamics. We also present a novel magnetic levitation platform for tethered studies of insect yaw.

 JoVE Medicine

Label-free Isolation and Enrichment of Cells Through Contactless Dielectrophoresis

1School of Biomedical Engineering and Science, Virginia Tech, 2Department of Engineering Science and Mechanics, Virginia Tech

JoVE 50634

Contactless dielectrophoresis (cDEP) achieves sorting and enrichment of particles via their intrinsic dielectric properties. Fluidic electrode channels replace metallic electrodes traditional to DEP, suiting cDEP to non-damaging sterile characterization and sorting of biological particles. We demonstrate how to prepare a cDEP microdevice and conduct cell characterization and sorting experiments.

 JoVE Medicine

Murine Spinotrapezius Model to Assess the Impact of Arteriolar Ligation on Microvascular Function and Remodeling

1Department of Biomedical Engineering, University of Virginia, 2Department of Biomedical Engineering, California Polytechnic State University, 3Office of Animal Welfare, University of Virginia, 4Department of Biomedical Engineering & Institute for Computational Medicine, Johns Hopkins University

JoVE 50218

We demonstrate a novel arterial ligation model in murine spinotrapezius muscle, including a step-by-step procedure and description of required instrumentation. We describe the surgery and relevant outcome measurements relating to vascular network remodeling and functional vasodilation using intravital and confocal microscopy.

 JoVE Bioengineering

Tissue Engineering of a Human 3D in vitro Tumor Test System

1Department of Tissue Engineering and Regenerative Medicine, University Hospital Würzburg

JoVE 50460

Methods to create human 3D tumor tissues as test systems are described. These technologies are based on a decellularized Biological Vascularized Scaffold (BioVaSc), primary human cells and a tumor cell line, which can be cultured under static as well as under dynamic conditions in a flow bioreactor.

 JoVE Behavior

Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

1Functional and Applied Biomechanics Group, National Institutes of Health, 2Laboratory for Non-invasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, 3Department of Health and Human Performance, University of Houston, 4Center for Neuromotor & Biomechanics Research, University of Houston, 5Department of Biomedical Engineering, University of Houston

JoVE 50602

Development of an effective brain-machine-interface (BMI) system for restoration and rehabilitation of bipedal locomotion requires accurate decoding of user's intent. Here we present a novel experimental protocol and data collection technique for simultaneous non-invasive acquisition of neural activity, muscle activity, and whole-body kinematics during various locomotion tasks and conditions.

 JoVE Neuroscience

Extracellularly Identifying Motor Neurons for a Muscle Motor Pool in Aplysia californica

1Department of Biology, Case Western Reserve University, 2Department of Neurosciences, Case Western Reserve University, 3Department of Biomedical Engineering, Case Western Reserve University

JoVE 50189

In animals with large identified neurons (e.g. mollusks), analysis of motor pools is done using intracellular techniques1,2,3,4. Recently, we developed a technique to extracellularly stimulate and record individual neurons in Aplysia californica5. We now describe a protocol for using this technique to uniquely identify and characterize motor neurons within a motor pool.

 JoVE Bioengineering

Multi-Scale Modification of Metallic Implants With Pore Gradients, Polyelectrolytes and Their Indirect Monitoring In vivo

1Biomatériaux et Bioingénieriee, INSERM, 2Service Oto-Rhino-Laryngologie, Hôpitaux Universitaires de Strasbourg, 3Faculté de Chirurgie Dentaire, Université de Strasbourg

JoVE 50533

In this video, we will demonstrate modification techniques for porous metallic implants to improve their functionality and to control cell migration. Techniques include development of pore gradients to control cell movement in 3D and production of basement membrane mimics to control cell movement in 2-D. Also, a HPLC-based method for monitoring implant integration in-vivo via analysis of blood proteins is described.

 JoVE Bioengineering

Procedure for Lung Engineering

1Department of Biomedical Engineering, Yale University, 2Department of Biomedical Engineering, School of Medicine, Duke University, 3Department of Anesthesia, Yale University

JoVE 2651

We have developed a decellularized lung extracellular matrix and novel biomimetic bioreactor that can be used to generate functional lung tissue. By seeding cells into the matrix and culturing in the bioreactor, we generate tissue that demonstrates effective gas exchange when transplanted in vivo for short periods of time.

 JoVE Bioengineering

Simultaneously Capturing Real-time Images in Two Emission Channels Using a Dual Camera Emission Splitting System: Applications to Cell Adhesion

1Department of Chemical and Biomolecular Engineering, Russ College of Engineering and Technology, Ohio University, 2Biomedical Engineering Program, Ohio University

JoVE 50604

Dual camera emission splitting systems for two-color fluorescence microscopy generate real-time image sequences with exceptional optical and temporal resolution, a requirement of certain live cell assays including parallel plate flow chamber adhesion assays. When software is employed to merge images from simultaneously acquired emission channels, pseudocolored image sequences are produced.

 JoVE Bioengineering

Engineering Skeletal Muscle Tissues from Murine Myoblast Progenitor Cells and Application of Electrical Stimulation

1Department of Biomedical Engineering, Soft Tissue Biomechanics and Engineering, Eindhoven University of Technology, The Netherlands

JoVE 4267

Engineered muscle tissue has great potential in regenerative medicine, as disease model and also as an alternative source for meat. Here we describe the engineering of a muscle construct, in this case from mouse myoblast progenitor cells, and the stimulation by electrical pulses.

 JoVE Bioengineering

Design of a Biaxial Mechanical Loading Bioreactor for Tissue Engineering

1Department of Orthopaedics, The Warren Alpert Brown Medical School of Brown University and the Rhode Island Hospital, 2Center for Restorative and Regenerative Medicine, VA Medical Center, Providence, RI, 3University of Texas Southwestern Medical Center

JoVE 50387

We designed a novel mechanical loading bioreactor that can apply uniaxial or biaxial mechanical strain to a cartilage biocomposite prior to transplantation into an articular cartilage defect.

 JoVE Neuroscience

Optogenetic Stimulation of the Auditory Nerve

1InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen, 2Bernstein Focus for Neurotechnology, University of Goettingen, 3Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen, 4Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Goettingen, 5Department of Chemical, Electronic, and Biomedical Engineering, University of Guanajuato

JoVE 52069

Cochlear implants (CIs) enable hearing by direct electrical stimulation of the auditory nerve. However, poor frequency and intensity resolution limits the quality of hearing with CIs. Here we describe optogenetic stimulation of the auditory nerve in mice as an alternative strategy for auditory research and developing future CIs.

 JoVE Bioengineering

Live Cell Imaging during Mechanical Stretch

1Department of Physiology, University of Tennessee Health Science Center, 2Department of Biomedical Engineering and Imaging, University of Tennessee Health Science Center, 3Department of Biomedical Engineering, University of Memphis, 4Department of Engineering Technology, University of Memphis

JoVE 52737

A novel imaging protocol was developed using a custom motor-driven mechanical actuator to allow the measurement of real time responses to mechanical strain in live cells. Relevant to mechanobiology, the system can apply strains up to 20% while allowing near real-time imaging with confocal or atomic force microscopy.

 JoVE Engineering

Development of a 3D Graphene Electrode Dielectrophoretic Device

1Department of Chemical Engineering, Michigan Technological University, 2Department of Mechanical Engineering, Michigan Technological University, 3XG Sciences, Inc.

JoVE 51696

A microdevice with high throughput potential is used to demonstrate three-dimensional (3D) dielectrophoresis (DEP) with novel materials. Graphene nanoplatelet paper and double sided tape were alternately stacked; a 700 μm micro-well was drilled transverse to the layers. DEP behavior of polystyrene beads was demonstrated in the micro-well.

 JoVE Biology

The Logic, Experimental Steps, and Potential of Heterologous Natural Product Biosynthesis Featuring the Complex Antibiotic Erythromycin A Produced Through E. coli

1Chemical and Biological Engineering Department, State University of New York at Buffalo, 2Chemical Engineering Department, Massachusetts Institute of Technology

JoVE 4346

The heterologous biosynthesis of erythromycin A through E. coli includes the following experimental steps: 1) genetic transfer; 2) heterologous reconstitution; and 3) product analysis. Each step will be explained in the context of the motivation, potential, and challenges in producing therapeutic natural products using E. coli as a surrogate host.

More Results...
simple hit counter