Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Cadmium Chloride: A cadmium halide in the form of colorless crystals, soluble in water, methanol, and ethanol. It is used in photography, in dyeing, and calico printing, and as a solution to precipitate sulfides. (McGraw-Hill Dictionary of Scientific and Technical Terms, 5th ed)
 JoVE Environment

Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

1Division of Physical Therapy, Department of Orthopedics & Rehabilitation, University of New Mexico, 2Department of Ecosystem Science and Management, University of Wyoming, 3School of Pharmacy, University of Wyoming, 4Department of Environmental and Radiological Health Sciences, Colorado State University, 5Center for Environmental Medicine, Colorado State University, 6College of Pharmacy, California Northstate University


JoVE 52715

 Science Education: Essentials of Environmental Science

Soil Nutrient Analysis: Nitrogen, Phosphorus, and Potassium

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In this experiment, three soil macronutrients are chemically extracted, combined with color-based reagents, then analyzed using color to determine the nutrient concentration present in the soil sample.

Nitrogen, phosphorus, and potassium are the main components of soil fertilizer. These methods isolate each nutrient from the soil into a solution that can be analyzed using turbidity and color to determine the concentration of nutrients present in the soil sample. Knowing present concentration informs environmental scientists of a nutrient deficiency or surplus in soils used to support plant production, and also provides general insight into basic biogeochemical cycles of an ecosystem.

 JoVE Biology

An Easy Method for Plant Polysome Profiling

1Laboratoire de Génétique et Biophysique des Plantes, Aix-Marseille Université, 2UMR 7265 Biologie Végétale & Microbiologie Environnementales, CNRS, 3BIAM, CEA, 4Department of Biology, Biocenter, University of Copenhagen, 5Laboratoire de Chimie Bactérienne, 6CNRS, LCB UMR 7283, Aix Marseille Université


JoVE 54231

 JoVE Environment

LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism

1Center for Cancer Pharmacology, University of Pennsylvania, 2Center for Excellence in Environmental Toxicology, University of Pennsylvania, 3Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, 4Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania, 5A.J. Drexel Autism Institute, Drexel University


JoVE 53941

 JoVE Bioengineering

Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles

1South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, 2School of Medicine, Western Sydney University, 3Correlative Microscopy Group, Ingham Institute for Applied Medical Research, 4Electron Microscopy Laboratory, Department of Anatomical Pathology, Sydney South West Pathology Service, New South Wales Health Pathology, 5School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia


JoVE 54307

 JoVE Biology

Dopamine Release at Individual Presynaptic Terminals Visualized with FFNs

1Departments of Neurology, Columbia University, 2Departments of Psychiatry and Pharmacology, Columbia University, 3Department of Chemistry, Columbia University, 4eMolecules, Inc., 5Departments of Neurology and Physiology, University of California School of Medicine, San Francisco, 6Division of Molecular Therapeutics, New York Psychiatric Institute


JoVE 1562

Results below contain some, but not all of your search terms.
 JoVE Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory


JoVE 50731

Results below contain some, but not all of your search terms.
 JoVE Chemistry

Synthesis of Ligand-free CdS Nanoparticles within a Sulfur Copolymer Matrix

1Department of Materials Science and Engineering, University of Washington, 2Molecular Engineering and Sciences Institute, University of Washington, 3Clean Energy Institute, University of Washington, 4Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 5Department of Chemical Engineering, University of Washington, 6Department of Chemistry, University of Washington


JoVE 54047

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Science

Nutrients in Aquatic Ecosystems

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Nitrogen and phosphorus are essential plant nutrients found in aquatic ecosystems and both are monitored as a part of water quality testing because in excess amounts they can cause significant water quality problems. 

Nitrogen in water is measured as the common form nitrate (NO3-) that is dissolved in water and readily absorbed by photosynthesizers such as algae. The common form of phosphorus measured is phosphate (PO43-), which is strongly attracted to sediment particles as well as dissolved in water. In excess amounts, both nutrients can cause an increase in aquatic plant growth (algal bloom, Figure 1) that can disrupt the light, temperature, and oxygen levels in the water below and lead to eutrophication and hypoxia (low dissolved oxygen in water) forming a “dead zone” of no biological activity. Sources of nitrates and phosphorus include wastewater treatment plants, runoff from fertilized lawns and agricultural lands, faulty septic systems, animal manure runoff, and industrial waste discharge. Figu

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Organic Chemistry

Schlenk Lines Transfer of Solvents

JoVE Science Education

Source: Laboratory of Dr. Ian Tonks — University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of General Chemistry

Determining the Solubility Rules of Ionic Compounds

JoVE Science Education

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

An ionic compound's solubility can be determined via qualitative analysis. Qualitative analysis is a branch of analytical chemistry that uses chemical properties and reactions to identify the cation or anion present in a chemical compound. While the chemical reactions rely on known solubility rules, those same rules can be determined by identifying the products that form. Qualitative analysis is not typically done in modern industrial chemistry labs, but it can be used easily in the field without the need of sophisticated instrumentation. Qualitative analysis also focuses on understanding ionic and net ionic reactions as well as organizing data into a flow chart to explain observations and make definitive conclusions. Many cations have similar chemical properties, as do the anion counterparts. Correct identification requires careful separation and analysis to systematically identify the ions present in a solution. It is important to understand acid/base properties, ionic equilibria, redox reactions, and pH properties to identify ions successfully. While there is a qualitative test for virtually every elemental and polyatomic ion, the identification process typically begi

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of General Chemistry

Determining the Empirical Formula

JoVE Science Education

Source: Laboratory of Dr. Neal Abrams - SUNY College of Environmental Science and Forestry

Determining the chemical formula of a compound is at the heart of what chemists do in the laboratory every day. Many tools are available to aid in this determination, but one of the simplest (and most accurate) is the determination of the empirical formula. Why is this useful? Because of the law of conservation of mass, any reaction can be followed gravimetrically, or by change in mass. The empirical formula provides the smallest whole-number ratio among elements (or compounds) within a molecular compound. In this experiment, gravimetric analysis will be used to determine the empirical formula of copper chloride hydrate, CuxCly·nH2O.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements

1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 2Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3Institute of Agriculture, Tokyo University of Agriculture and Technology


JoVE 53981

Results below contain some, but not all of your search terms.
12345678919
More Results...
Waiting
simple hit counter