Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone: A proton ionophore that is commonly used as an uncoupling agent in biochemical studies.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of General Chemistry

Coordination Chemistry Complexes

JoVE Science Education

Source: Laboratory of Dr. Neal Abrams — SUNY College of Environmental Science and Forestry

Transition metals are found everywhere from vitamin supplements to electroplating baths. Transition metals also make up the pigments in many paints and compose all minerals. Typically, transition metals are found in the cationic form since they readily oxidize, or lose electrons, and are surrounded by electron donors called ligands. These ligands do not form ionic or covalent bonds with the metal center, rather they take on a third type of bond known as coordinate-covalent. The coordinate-covalent bond between a ligand and a metal is dynamic, meaning that ligands are continuously exchanging and re-coordinating around the metal center. The identities of both the metal and the ligand dictates which ligands will bond preferentially over another. In addition, color and magnetic properties are also due to the types of complexes that are formed. The coordination compounds that form are analyzed using a variety of instruments and tools. This experiment explores why so many complexes are possible and uses a spectrochemical (color and chemical) method to help identify the type of coordination complex that forms.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego


JoVE 51039

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Analytical Chemistry

Sample Preparation for Analytical Preparation

JoVE Science Education

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Sample preparation is the way in which a sample is treated to prepare for analysis. Careful sample preparation is critical in analytical chemistry to accurately generate either a standard or unknown sample for a chemical measurement. Errors in analytical chemistry methods are categorized as random or systematic. Random errors are errors due to change and are often due to noise in instrument. Systematic errors are due to investigator or instrumental bias, which introduces an offset in the measured value. Errors in sample preparation are systematic errors, which will propagate through analysis, causing uncertainty or inaccuracies through improper calibration curves. Systematic errors can be eliminated through correct sample preparation and proper use of the instrument. Poor sample preparation can also sometimes cause harm to the instrument.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Immunology and Infection

Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes

1Department of Microbiology and Immunology, University at Buffalo, State University of New York, 2Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, 3New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York


JoVE 51008

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Biofunctionalized Prussian Blue Nanoparticles for Multimodal Molecular Imaging Applications

1The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 2Fischell Department of Bioengineering, University of Maryland, 3Department of Radiology, George Washington University, 4Department of Pediatrics, George Washington University


JoVE 52621

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Organic Chemistry

Preparing Anhydrous Reagents and Equipment

JoVE Science Education

Source: Laboratory of Dr. Dana Lashley - College of William and Mary
Demonstrated by: Timothy Beck and Lucas Arney

Many reactions in organic chemistry are moisture-sensitive and must be carried out under careful exclusion of water. In these cases the reagents have a high affinity to react with water from the atmosphere and if left exposed the desired reaction will not take place or give poor yields, because the reactants are chemically altered. In order to prevent undesired reactions with H2O these reactions have to be carried out under an inert atmosphere. An inert atmosphere is generated by running the reaction under nitrogen gas, or in more sensitive cases, under a noble gas such as argon. Every component in such a reaction must be completely anhydrous, or free of water. This includes all reagents and solvents used as well as all glassware and equipment that will come into contact with the reagents. Extremely water-sensitive reactions must be carried out inside of a glovebox which provides a completely sealed off anhydrous environment to work under via a pair of gloves which protrudes out to one of the sides of the chamber.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
123456789115
More Results...
Waiting
simple hit counter