Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Chromatography, Affinity: A chromatographic technique that utilizes the ability of biological molecules to bind to certain ligands specifically and reversibly. It is used in protein biochemistry. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
 JoVE Bioengineering

Isolation and Characterization Of Chimeric Human Fc-expressing Proteins Using Protein A Membrane Adsorbers And A Streamlined Workflow

1Department of Chemical and Biomolecular Engineering, Ohio University, 2Biomedical Engineering Program, Russ College of Engineering and Technology, Ohio University, 3Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School

JoVE 51023

 JoVE Chemistry

Quantitative Detection of Trace Explosive Vapors by Programmed Temperature Desorption Gas Chromatography-Electron Capture Detector

1Chemical Sensing & Fuel Technology, Chemistry Division, U.S. Naval Research Laboratory, 2NOVA Research, Inc., 3Bio/Analytical Chemistry, Chemistry Division, U.S. Naval Research Laboratory, 4Navy Technology Center for Safety and Survivability, Chemistry Division, U.S. Naval Research Laboratory

JoVE 51938

 Science Education: Essentials of Analytical Chemistry

Ion-Exchange Chromatography

JoVE Science Education

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Ion-exchange chromatography is a type of chromatography that separates analytes based on charge. A column is used that is filled with a charged stationary phase on a solid support, called an ion-exchange resin. Strong cation-exchange chromatography preferentially separates out cations by using a negatively-charged resin while strong anion-exchange chromatography preferentially selects out anions by using a positively-charged resin. This type of chromatography is popular for sample preparation, for example in the cleanup of proteins or nucleic acid samples. Ion-exchange chromatography is a two-step process. In the first step, the sample is loaded onto the column in a loading buffer. The binding of the charged sample to the column resin is based on ionic interactions of the resin to attract the sample of the opposite charge. Thus, charged samples of opposite polarity to the resin are strongly bound. Other molecules that are not charged or are of the opposite charge are not bound and are washed through the column. The second step is to elute the analyte that is bound to the resin. This is accomplished with a salt gradient, where the amount of salt in the buffer is slowly increased. Fractions are collected at the end of the column as

 Science Education: Essentials of Organic Chemistry

Column Chromatography

JoVE Science Education

Source: Laboratory of Dr. Jimmy Franco - Merrimack College

Column chromatography is one of the most useful techniques for purifying compounds. This technique utilizes a stationary phase, which is packed in a column, and a mobile phase that passes through the column. This technique exploits the differences in polarity between compounds, allowing the molecules to be facilely separated.1 The two most common stationary phases for column chromatography are silica gel (SiO2) and alumina (Al2O3), with the most commonly used mobile phases being organic solvents.2 The solvent(s) chosen for the mobile phase are dependent on the polarity of the molecules being purified. Typically more polar compounds require more polar solvents in order to facilitate the passage of the molecules through the stationary phase. Once the purification process has been completed the solvent can be removed from the collected fractions using a rotary evaporator to yield the isolated material.

 JoVE Chemistry

From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins

1Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 2National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 3National Institute of General Medical Sciences (NIGMS), National Institutes of Health

JoVE 53245

 JoVE Immunology and Infection

Antibody Binding Specificity for Kappa (Vκ) Light Chain-containing Human (IgM) Antibodies: Polysialic Acid (PSA) Attached to NCAM as a Case Study

1Department of Neurology, Mayo Clinic, 2Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, 3Center for Regenerative Medicine, Neuroregeneration, Mayo Clinic, 4Division of Neonatal Medicine, Mayo Clinic, 5Department of Pediatric and Adolescent Medicine, Mayo Clinic

JoVE 54139

 Science Education: Essentials of Analytical Chemistry

Gas Chromatography (GC) with Flame-Ionization Detection

JoVE Science Education

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Gas chromatography (GC) is used to separate and detect small molecular weight compounds in the gas phase. The sample is either a gas or a liquid that is vaporized in the injection port. Typically, the compounds analyzed are less than 1,000 Da, because it is difficult to vaporize larger compounds. GC is popular for environmental monitoring and industrial applications because it is very reliable and can be run nearly continuously. GC is typically used in applications where small, volatile molecules are detected and with non-aqueous solutions. Liquid chromatography is more popular for measurements in aqueous samples and can be used to study larger molecules, because the molecules do not need to vaporize. GC is favored for nonpolar molecules while LC is more common for separating polar analytes. The mobile phase for gas chromatography is a carrier gas, typically helium because of its low molecular weight and being chemically inert. Pressure is applied and the mobile phase moves the analyte through the column. The separation is accomplished using a column coated with a stationary phase. Open tubular capillary columns are the most popular columns and have the stationary phase coated on the walls of the capillary. Stationary phases a

 Science Education: Essentials of Earth Science

Purification of a Total Lipid Extract with Column Chromatography

JoVE Science Education

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

The product of an organic solvent extraction, a total lipid extract (TLE), is often a complex mixture of hundreds, if not thousands, of different compounds. The researcher is often only interested in a handful of compounds. The compounds of interest may belong to one of several classes of compounds, such as alkanes, ketones, alcohols, or acids (Figure 1), and it may be useful to remove the compound classes to which it does not belong in order to get a clearer view of the compounds you are interested in. For example, a TLE may contain 1,000 compounds, but the Uk'37 sea surface temperature proxy is based on only two compounds (alkenones) and the TEX86 sea surface temperature proxy is based on only four (glycerol dialkyl glycerol tetraethers). It would behoove the researcher to remove as many of the compounds they are not interested in. This makes the instrumental analysis of the compounds of interest (alkenones or GDGTs) less likely to be complicated by other extraneous compounds. In other cases, an upstream purification technique may have produced compounds you wish to now remove from the sample, such as the production of carboxylic acids during saponification in our

 JoVE Chemistry

CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis

1Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Proteomics Center of Excellence, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 2Institute of Chemistry, Proteomics Unit, Federal University of Rio de Janeiro, 3Department of Cell Biology, Brazilian Center for Protein Research, Laboratory of Biochemistry and Protein Chemistry, University of Brasilia

JoVE 53597

 JoVE Biology

A Lectin HPLC Method to Enrich Selectively-glycosylated Peptides from Complex Biological Samples

1Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco - UCSF, 2Buck Institute for Age Research, 3Department of Chemistry, Purdue University

JoVE 1398

 JoVE Chemistry

Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides

1The Molecular Foundry, E. O. Lawrence Berkeley National Laboratory, 2Institute of Chemical Sciences, Bahauddin Zakariya University, 3Department of Chemistry, University of the Balearic Islands, 4Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology

JoVE 52926

More Results...
simple hit counter