Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Cloning, Organism: The formation of one or more genetically identical organisms derived by vegetative reproduction from a single cell. The source nuclear material can be embryo-derived, fetus-derived, or taken from an adult somatic cell.
 JoVE Developmental Biology

Imaging Subcellular Structures in the Living Zebrafish Embryo

1Institute of Neuronal Cell Biology, Technische Universität München, 2Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3Faculty of Biology, Ludwig-Maximilians-Universität-München, 4Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München, 5German Center for Neurodegenerative Diseases, 6Laboratory of Brain Development and Repair, The Rockefeller University

JoVE 53456

 Science Education: Essentials of Genetics

Recombineering and Gene Targeting

JoVE Science Education

One of the most widely used tools in modern biology is molecular cloning with restriction enzymes, which create compatible ends between DNA fragments that allow them to be joined together. However, this technique has certain restrictions that limit its applicability for large or complex DNA construct generation. A newer technique that addresses some of these shortcomings is recombineering, which modifies DNA using homologous recombination (HR), the exchange between different DNA molecules based on stretches of similar or identical sequences. Together with gene targeting, which takes advantage of endogenous HR to alter an organism’s genome at a specific loci, HR-based cloning techniques have greatly improved the speed and efficacy of high-throughput genetic engineering.In this video, we introduce the principles of HR, as well as the basic components required to perform a recombineering experiment, including recombination-competent organisms and genomic libraries such as bacterial artificial chromosomes (BAC). We then walk through a protocol that uses recombineering to generate a gene-targeting vector that can ultimately be transfected into embryonic stem cells to generate a transgenic animal. Finally, several applications that highlight the utility and variety of recombineering techniques wi

 JoVE Developmental Biology

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen

JoVE 53978

 JoVE Biology

Competitive Genomic Screens of Barcoded Yeast Libraries

1Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, 2Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 3Donnelly Sequencing Centre, University of Toronto, 4Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, 5Stanford Genome Technology Center, Stanford School of Medicine, Stanford University, 6Department of Pharmaceutical Sciences, University of Toronto

JoVE 2864

 Science Education: Essentials of Genetics

An Overview of Genetic Engineering

JoVE Science Education

Genetic engineering – the process of purposefully altering an organism’s DNA – has been used to create powerful research tools and model organisms, and has also seen many agricultural applications. However, in order to engineer traits to tackle complex agricultural problems such as stress tolerance, or to realize the promise of gene therapy for treating human diseases, further advances in the field are still needed. Important considerations include the safe and efficient delivery of genetic constructs into cells or organisms, and the establishment of the desired modification in an organism’s genome with the least “off-target” effects. JoVE’s Overview of Genetic Engineering will present a history of the field, highlighting the discoveries that confirmed DNA as the genetic material and led to the development of tools to modify DNA. Key questions that must be answered in order to improve the process of genetic engineering will then be introduced, along with various tools used by genetic engineers. Finally, we will survey several applications demonstrating the types of experimental questions and strategies in the field today.

More Results...
simple hit counter