Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Cold Temperature: An absence of warmth or heat or a temperature notably below an accustomed norm.
 Science Education: General Laboratory Techniques

Regulating Temperature in the Lab: Preserving Samples Using Cold

JoVE Science Education

Preservation of laboratory samples, specimens, and reagents using extreme cold is routinely performed in biomedical research labs. This video will discuss some of the methods for keeping laboratory samples cold and will explain the correct cooling method to use for each experimental requirement.

For example, cooling agents, such as ice and dry ice, are typically used when keeping samples cold during experiments. This video discusses the physical properties of the most commonly used cooling agents, as well as safety precautions for working with them. When it comes to keeping samples cold in between experiments, cooling equipment, including laboratory grade refrigerators and freezers can be used to preserve samples for extended period of time. Also discussed in this video are types of samples and reagents that can be stored in the commonly-available laboratory cooling equipment. Finally, the concept of cryopreservation is introduced as a process through which tissues, cells, and biomolecules are cooled to sub-zero temperatures, thereby effectively stopping all sample-degrading biological activity. Several methods of cryopreservation are discussed that minimize or eliminate the formation of damaging ice crystals.

 JoVE Medicine

Human Brown Adipose Tissue Depots Automatically Segmented by Positron Emission Tomography/Computed Tomography and Registered Magnetic Resonance Images

1Chemical and Physical Biology Program, Vanderbilt University, 2Department of Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, 3Radiology & Radiological Sciences, Vanderbilt University Medical Center, 4Department of Pharmacology, Vanderbilt University


JoVE 52415

 JoVE Chemistry

Determining the Ice-binding Planes of Antifreeze Proteins by Fluorescence-based Ice Plane Affinity

1Department of Biomedical and Molecular Sciences, Queen's University, 2National Institute of Neurological Disorders and Stroke, Porter Neuroscience Research Center, 3Research Institute of Genome-Based Biofactory, National Institute of Advanced Industrial Science and Technology, 4The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem


JoVE 51185

 JoVE Biology

Removal of Exogenous Materials from the Outer Portion of Frozen Cores to Investigate the Ancient Biological Communities Harbored Inside

1Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH, 2Environmental Processes Branch, Environmental Laboratory, US Army Engineer Research & Development Center, Vicksburg, MS, 3Terrestrial and Cryospheric Scienes Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Hanover, NH, 4Biogeochemical Sciences Branch, Cold Regions Research and Engineering Laboratory, US Army Engineer Research & Development Center, Fairbanks, AK


JoVE 54091

 JoVE Developmental Biology

Understanding Early Organogenesis Using a Simplified In Situ Hybridization Protocol in Xenopus

1Developmental and Stem Cell Biology, Hospital for Sick Children, 2Children's Health Research Institute, University of Western Ontario, 3Department of Physiology and Pharmacology, University of Western Ontario, 4Neurosciences and Mental Health, Hospital for Sick Children, 5Department of Paediatrics, University of Western Ontario


JoVE 51526

 JoVE Biology

Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation

1Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 2A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, 3Department of Biochemistry, National University of Singapore, Singapore


JoVE 3770

 JoVE Developmental Biology

In Vitro Colony Assays for Characterizing Tri-potent Progenitor Cells Isolated from the Adult Murine Pancreas

1Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, 2Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute of City of Hope, 3Division of Chemistry and Chemical Engineering, California Institute of Technology


JoVE 54016

 JoVE Neuroscience

Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis

1Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen, 2Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen, 3DFG Excellence Cluster 171, Georg-August-Universität Göttingen, 4German Hearing Center Hannover


JoVE 54108

 Science Education: Essentials of Organic Chemistry

Conducting Reactions Below Room Temperature

JoVE Science Education

Source: Laboratory of Dr. Dana Lashley - College of William and Mary

Demonstration by: Matt Smith

When new bonds are formed in the course of a chemical reaction, it requires that the involved species (atoms or molecules) come in very close proximity and collide into one another. The collisions between these species are more frequent and effective the higher the speed at which these molecules are moving. A widely used rule of thumb, which has its roots in the Arrhenius equation1, states that raising the temperature by 10 K will approximately double the rate of a reaction, and raising the temperature by 20 K will quadruple the rate: (1) Equation (1) is often found in its logarithmic form: (2) where k is the rate of the chemical reaction, A is the frequency factor (relating to frequency of molecular collisions), Ea is the activation energy required for the reaction, R is the ideal gas constant, and T is the temperature at which the r

 JoVE Medicine

Normothermic Ex Vivo Kidney Perfusion for the Preservation of Kidney Grafts prior to Transplantation

1Multi Organ Transplant Program, Department of Surgery, Toronto General Hospital, 2Division of Nephrology, The Hospital for Sick Children, Toronto, 3Department of General, Visceral & Transplant Surgery, University Medical Center Mainz, 4Department of Abdominal, Vascular & Transplant Surgery, Merheim Medical Center Cologne, 5Laboratory Medicine & Pathobiology, Toronto General Hospital, 6Departments of Surgery (Urology) & Physiology, The Hospital for Sick Children, Toronto, 7Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto


JoVE 52909

 JoVE Medicine

Ex Situ Normothermic Machine Perfusion of Donor Livers

1Section of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, 2Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, 3Center of Engineering in Medicine/Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Burns Hospital, 4Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School


JoVE 52688

 Science Education: Essentials of Organic Chemistry

Purifying Compounds by Recrystallization

JoVE Science Education

Source: Laboratory of Dr. Jimmy Franco - Merrimack College

Recrystallization is a technique used to purify solid compounds.1 Solids tend to be more soluble in hot liquids than in cold liquids. During recrystallization, an impure solid compound is dissolved in a hot liquid until the solution is saturated, and then the liquid is allowed to cool.2 The compound should then form relatively pure crystals. Ideally, any impurities that are present will remain in the solution and will not be incorporated into the growing crystals (Figure 1). The crystals can then be removed from the solution by filtration. Not all of the compound is recoverable — some will remain in the solution and will be lost. Recrystallization is not generally thought of as a separation technique; rather, it is a purification technique in which a small amount of an impurity is removed from a compound. However, if the solubility properties of two compounds are sufficiently different, recrystallization can be used to separate them, even if they are present in nearly equal amounts. Recrystallization works best when most impurities have already been removed by another method, such as extraction or column chromatography. Fi</span>…		</p>
		
	
	</article><!-- article_summary_container -->
<!-- end: article-summary.php --><!-- begin: article-summary.php -->
<article class=

 JoVE Chemistry

Glycan Node Analysis: A Bottom-up Approach to Glycomics

1Department of Chemistry & Biochemistry, The Biodesign Institute – Center for Personalized Diagnostics, Arizona State University


JoVE 53961

 JoVE Biology

Tissue Triage and Freezing for Models of Skeletal Muscle Disease

1Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine, Medical College of Wisconsin, 2Department of Physiology and Cell Biology, The Ohio State University, 3Department of Human Nutrition, Foods and Exercise, Virginia Tech, 4Division of Biomedical Informatics, Department of Biostatistics, Department of Computer Science, University of Kentucky, 5Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, 6Cure Congenital Muscular Dystrophy, 7Joshua Frase Foundation, 8Department of Rehabilitation Medicine, University of Washington, 9Department of Physiology, University of Arizona


JoVE 51586

12345678988
More Results...
Waiting
simple hit counter