JoVE   
You have subscription access to articles in this section through JoVE.

  JoVE Biology

  
You have subscription access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have subscription access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have subscription access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have subscription access to videos in this collection through JoVE.

Essentials of
Neuroscience

You have subscription access to videos in this collection through JoVE.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
Colloids: Two-phase systems in which one is uniformly dispersed in another as particles small enough so they cannot be filtered or will not settle out. The dispersing or continuous phase or medium envelops the particles of the discontinuous phase. All three states of matter can form colloids among each other.
 JoVE Chemistry

Confocal Imaging of Confined Quiescent and Flowing Colloid-polymer Mixtures

1Chemical and Biomolecular Engineering Department, University of Houston


JoVE 51461

Confocal microscopy is used to image quiescent and flowing colloid-polymer mixtures, which are studied as model systems for attractive suspensions. Image analysis algorithms are used to calculate structural and dynamic metrics for the colloidal particles that measure changes due to geometric confinement.

 JoVE Biology

Tangential Flow Ultrafiltration: A “Green” Method for the Size Selection and Concentration of Colloidal Silver Nanoparticles

1Department of Chemistry, Wright State University, 2Department of Neuroscience, Cell Biology, and Physiology, Wright State University


JoVE 4167

Tangential flow ultrafiltration (TFU) is a recirculation method used for the weight-based separation of biosamples. TFU was adapted to size-select (1-20 nm diameter) and highly concentrate a large volume of polydisperse silver nanoparticles (4 L of 15.2 μg ml-1 down to 4 ml of 8,539.9 μg ml-1) with minimal aggregation.

 JoVE Bioengineering

A Novel Method for Localizing Reporter Fluorescent Beads Near the Cell Culture Surface for Traction Force Microscopy

1Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign


JoVE 51873

Traditional techniques for fabricating polyacrylamide (PA) gels containing fluorescent probes involve sandwiching a gel between an adherent surface and a glass slide. Here, we show that coating this slide with poly-D-lysine (PDL) and fluorescent probes localizes the probes to within 1.6 µm from the gel surface.

 JoVE Chemistry

Activating Molecules, Ions, and Solid Particles with Acoustic Cavitation

1Marcoule Institute for Separative Chemistry, UMR 5257 CEA-CNRS-UM2-ENSCM


JoVE 51237

Acoustic cavitation in liquids submitted to power ultrasound creates transient extreme conditions inside the collapsing bubbles, which are the origin of unusual chemical reactivity and light emission, known as sonoluminescence. In the presence of noble gases, nonequilibrium plasma is formed. The "hot" particles and the photons generated by collapsing bubbles are able to excite species in solution.

 JoVE Bioengineering

Gold Nanostar Synthesis with a Silver Seed Mediated Growth Method

1Department of Physics and Astronomy, The University of Texas at San Antonio, 2Centro de Investigaciones en Optica A. C., 3Department of Biology and Neurosciences Institute, The University of Texas at San Antonio


JoVE 3570

We synthesized star shaped gold nanostars using a silver seed mediated growth method. The diameter of the nanostars ranges from 200 to 300 nm and the number of tips vary from 7 to 10. The nanoparticles have a broad surface plasmon resonance mode centered in the near infrared.

 JoVE Chemistry

Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

1Oak Ridge Institute for Science and Education, 2Air Force Research Laboratory, Airbase Technology Division, 3School of Materials Science and Engineering, Clemson University


JoVE 51022

Silica nanoparticles were prepared using acid-catalysis of a siloxane precursor and microwave-assisted synthetic techniques resulting in the controlled growth of nanomaterials ranging from 30-250 nm in diameter. The growth dynamics can be controlled by varying the initial silicic acid concentration, time of the reaction, and temperature of reaction.

 JoVE Immunology and Infection

A Quantitative Evaluation of Cell Migration by the Phagokinetic Track Motility Assay

1Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, 2Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, 3Department of Microbiology and Immunology, SUNY Upstate Medical University, 4Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center


JoVE 4165

The phagokinetic motility track assay is a method used to assess the movement of cells. Specifically, the assay measures chemokinesis (random cell motility) over time in a quantitative manner. The assay takes advantage of the ability of cells to create a measurable track of their movement on colloidal gold-coated coverslips.

 JoVE Chemistry

Quantitative and Qualitative Examination of Particle-particle Interactions Using Colloidal Probe Nanoscopy

1Faculty of Pharmacy, University of Sydney, 2Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University


JoVE 51874

Colloidal probe nanoscopy can be used within a variety of fields to gain insight into the physical stability and coagulation kinetics of colloidal systems and aid in drug discovery and formulation sciences using biological systems. The method described within provides a quantitative and qualitative means to study such systems.

 JoVE Clinical and Translational Medicine

Protocols for Assessing Radiofrequency Interactions with Gold Nanoparticles and Biological Systems for Non-invasive Hyperthermia Cancer Therapy

1Department of Surgical Oncology, University of Texas M.D. Anderson Cancer Center, 2Department of Chemistry, Rice University, 3Mechanical Engineering and Materials Science, Rice University


JoVE 50480

We describe the protocols used to investigate the interactions of 13.56 MHz radiofrequency (RF) electric-fields with gold nanoparticle colloids in both non-biological and biological systems (in vitro/vivo). These interactions are being investigated for applications in cancer therapy.

 JoVE Immunology and Infection

Determination of Molecular Structures of HIV Envelope Glycoproteins using Cryo-Electron Tomography and Automated Sub-tomogram Averaging

1Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 2The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, 3National Library of Medicine, National Institutes of Health, 4Massachusetts Institute of Technology, 5William Fremd High School, 6University of Virginia, 7Duke University, 8Yale University, 9University of Notre Dame, 10Washington University in St. Louis, 11Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12Thomas Jefferson High School for Science and Technology


JoVE 2770

The protocol describes a high-throughput approach to determining structures of membrane proteins using cryo-electron tomography and 3D image processing. It covers the details of specimen preparation, data collection, data processing and interpretation, and concludes with the production of a representative target for the approach, the HIV-1 Envelope glycoprotein. These computational procedures are designed in a way that enables researchers and students to work remotely and contribute to data processing and structural analysis.

More Results...
Waiting
simple hit counter