JoVE   
You have subscription access to articles in this section through JoVE.

  JoVE Biology

  
You have subscription access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have subscription access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have subscription access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
 JoVE Biology

Protein WISDOM: A Workbench for In silico De novo Design of BioMolecules

1Department of Chemical and Biological Engineering, Princeton University


JoVE 50476

We developed computational de novo protein design methods capable of tackling several important areas of protein design. To disseminate these methods we present Protein WISDOM, an online tool for protein design (http://www.proteinwisdom.org). Starting from a structural template, design of monomeric proteins for increased stability and complexes for increased binding affinity can be performed.

 JoVE Bioengineering

Patient-specific Modeling of the Heart: Estimation of Ventricular Fiber Orientations

1Institute for Computational Medicine and the Department of Biomedical Engineering, Johns Hopkins University


JoVE 50125

A methodology to estimate ventricular fiber orientations from in vivo images of patient heart geometries for personalized modeling is described. Validation of the methodology performed using normal and failing canine hearts demonstrate that that there are no significant differences between estimated and acquired fiber orientations at a clinically observable level.

 JoVE Clinical and Translational Medicine

Detection of Architectural Distortion in Prior Mammograms via Analysis of Oriented Patterns

1Department of Electrical and Computer Engineering, Schulich School of Engineering, University of Calgary, 2Department of Radiology, University of Calgary


JoVE 50341

We demonstrate methods for the detection of architectural distortion in prior mammograms. Oriented structures are analyzed using Gabor filters and phase portraits to detect sites of radiating tissue patterns. Each site is characterized and classified using measures to represent spiculating patterns. The methods should assist in the detection of breast cancer.

 JoVE Clinical and Translational Medicine

Near Infrared Optical Projection Tomography for Assessments of β-cell Mass Distribution in Diabetes Research

1Umeå Centre for Molecular Medicine, Umeå University, 2Cell Transplant Center, Diabetes Research Institute, University of Miami,, 3EMBL-CRG Systems Biology Program, Centre for Genomic Regulation, Catalan Institute of Research and Advanced Studies, 4Dept. of Computing Science, Umeå University


JoVE 50238

We describe the adaptation of optical projection tomography (OPT)1 to imaging in the near infrared spectrum, and the implementation of a number of computational tools. These protocols enable assessments of pancreatic β-cell mass (BCM) in larger specimens, increase the multichannel capacity of the technique and increase the quality of OPT data.

 JoVE Clinical and Translational Medicine

Lesion Explorer: A Video-guided, Standardized Protocol for Accurate and Reliable MRI-derived Volumetrics in Alzheimer's Disease and Normal Elderly

1LC Campbell Cognitive Neurology Research Unit, Heart & Stroke Foundation Canadian Partnership for Stroke Recovery, Brain Sciences Research Program, Sunnybrook Health Sciences Centre, 2Department of Medicine (Neurology), Institute of Medical Science, University of Toronto


JoVE 50887

Lesion Explorer (LE) is a semi-automatic, image-processing pipeline developed to obtain regional brain tissue and subcortical hyperintensity lesion volumetrics from structural MRI of Alzheimer's disease and normal elderly. To ensure a high level of accuracy and reliability, the following is a video-guided, standardized protocol for LE's manual procedures.

 JoVE Biology

Metabolic Labeling of Newly Transcribed RNA for High Resolution Gene Expression Profiling of RNA Synthesis, Processing and Decay in Cell Culture

1Max von Pettenkofer Institute, 2Department of Medicine, University of Cambridge, 3Institute for Informatics, Ludwig-Maximilians-University Munich


JoVE 50195

Total cellular RNA provides a poor template for studying short-term changes in RNA synthesis and decay as well as the kinetics of RNA processing. Here, we describe metabolic labeling of newly transcribed RNA with 4-thiouridine followed by thiol-specific biotinylation and purification of newly transcribed RNA allowing to overcome these limitations.

 JoVE Neuroscience

Creating Objects and Object Categories for Studying Perception and Perceptual Learning

1Brain and Behavior Discovery Institute, Georgia Health Sciences University, 2Vision Discovery Institute, Georgia Health Sciences University, 3Department of Opthalmology, Georgia Health Sciences University, 4Intelligent Systems Laboratory, Palo Alto Research Center, 5Pattern Recognition Systems, Palo Alto Research Center, 6Department of Psychology, University of Minnesota


JoVE 3358

We describe a novel methodology for creating naturalistic 3-D objects and object categories with precisely defined feature variations. We use simulations of the biological processes of morphogenesis and phylogenesis to create novel, naturalistic virtual 3-D objects and object categories that can then be rendered as visual images or haptic objects.

 JoVE Clinical and Translational Medicine

Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases

1Department of Neurology, University of Ulm


JoVE 50427

Diffusion tensor imaging (DTI) basically serves as an MRI-based tool to identify in vivo the microstructure of the brain and pathological processes due to neurological disorders within the cerebral white matter. DTI-based analyses allow for application to brain diseases both at the group level and in single subject data.

 JoVE Immunology and Infection

Determination of Molecular Structures of HIV Envelope Glycoproteins using Cryo-Electron Tomography and Automated Sub-tomogram Averaging

1Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 2The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, 3National Library of Medicine, National Institutes of Health, 4Massachusetts Institute of Technology, 5William Fremd High School, 6University of Virginia, 7Duke University, 8Yale University, 9University of Notre Dame, 10Washington University in St. Louis, 11Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12Thomas Jefferson High School for Science and Technology


JoVE 2770

The protocol describes a high-throughput approach to determining structures of membrane proteins using cryo-electron tomography and 3D image processing. It covers the details of specimen preparation, data collection, data processing and interpretation, and concludes with the production of a representative target for the approach, the HIV-1 Envelope glycoprotein. These computational procedures are designed in a way that enables researchers and students to work remotely and contribute to data processing and structural analysis.

 JoVE Biology

A High Throughput MHC II Binding Assay for Quantitative Analysis of Peptide Epitopes

1Thayer School of Engineering, Dartmouth College, 2Institute for Immunology and Informatics, University of Rhode Island, 3Department of Computer Science, Dartmouth College


JoVE 51308

Biochemical assays with recombinant human MHC II molecules can provide rapid, quantitative insights into immunogenic epitope identification, deletion, or design.  Here, a peptide-MHC II binding assay scaled to 384-well plates is described. This cost effective format should prove useful in the fields of protein deimmunization and vaccine design and development.

More Results...
Waiting
simple hit counter