Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.
 JoVE Bioengineering

Production and Targeting of Monovalent Quantum Dots

1Department of Otolaryngology, University of California, San Francisco, 2Department of Chemistry, University of California, Berkeley, 3Materials Science Division, Lawrence Berkeley National Laboratory, 4Department of Pharmaceutical Chemistry, University of California, San Francisco, 5Tetrad Graduate Program, University of California, San Francisco, 6Center for Systems and Synthetic Biology, University of California, San Francisco, 7Chemistry and Chemical Biology Graduate Program, University of California, San Francisco

JoVE 52198

 Science Education: Essentials of Environmental Microbiology

Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Polymerase chain reaction (PCR) is a technique used to detect microorganisms that are present in soil, water, and atmospheric environments. By amplifying specific sections of DNA, PCR can facilitate the detection and identification of target microorganisms down to the species, strain, and serovar/pathovar level. The technique can also be utilized to characterize entire communities of microorganisms in samples. The culturing of microorganisms in the laboratory using specialized growth media is a long-established technique and remains in use for the detection of microorganisms in environmental samples. Many microbes in the natural environment, while alive, maintain low levels of metabolic activity and/or doubling times and are thus referred to as viable but non-culturable (VBNC) organisms. The use of culture-based techniques alone cannot detect these microbes and, therefore, does not provide a thorough assessment of microbial populations in samples. The use of PCR allows for the detection of culturable microbes, VBNC organisms, and those that are no longer alive or active, as the amplification of genetic sequences does not generally require the pre-enrichment of microorga

 JoVE Neuroscience

Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining

1Virus and Centromere Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, 2Université de Lyon 1, 3Laboratoire d'excellence, LabEX DEVweCAN, 4Institut de Virologie Moléculaire et Structurale, CNRS UPR 3296, 5Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286

JoVE 51091

 JoVE Immunology and Infection

Fluorescence in situ Hybridizations (FISH) for the Localization of Viruses and Endosymbiotic Bacteria in Plant and Insect Tissues

1Department of Entomology, Volcani Center, 2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 3Department of Applied Sciences, Institute for Adriatic Crops and Karst Reclamation, 4The Institute of Plant Sciences, Volcani Center

JoVE 51030

More Results...
simple hit counter