Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
DNA Viruses: Viruses whose nucleic acid is DNA.
 JoVE Immunology and Infection

Pairwise Growth Competition Assay for Determining the Replication Fitness of Human Immunodeficiency Viruses

1Department of Microbiology, University of Washington, 2Departments of Medicine and Laboratory Medicine, University of Washington, 3U.S Military HIV Research Program, Walter Reed Army Institute of Research, 4Henry M. Jackson Foundation


JoVE 52610

 JoVE Immunology and Infection

Modeling The Lifecycle Of Ebola Virus Under Biosafety Level 2 Conditions With Virus-like Particles Containing Tetracistronic Minigenomes

1Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 2Research Technology Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health


JoVE 52381

 JoVE Neuroscience

Detection of the Genome and Transcripts of a Persistent DNA Virus in Neuronal Tissues by Fluorescent In situ Hybridization Combined with Immunostaining

1Virus and Centromere Team, Centre de Génétique et Physiologie Moléculaire et Cellulaire, CNRS UMR 5534, 2Université de Lyon 1, 3Laboratoire d'excellence, LabEX DEVweCAN, 4Institut de Virologie Moléculaire et Structurale, CNRS UPR 3296, 5Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286


JoVE 51091

 JoVE Immunology and Infection

A Rapid Strategy for the Isolation of New Faustoviruses from Environmental Samples Using Vermamoeba vermiformis

1Faculty of Medicine and Pharmacy, Research Unit for Infectious and Tropical Emerging Diseases, Aix Marseille University, 2Pole of Infectious and Tropical Diseases, Clinical and Biological Sector, Federation of Bacteriology-Hygiene Virology, University Hospital Institute Mediterranean Infection


JoVE 54104

 JoVE Immunology and Infection

Fluorescence in situ Hybridizations (FISH) for the Localization of Viruses and Endosymbiotic Bacteria in Plant and Insect Tissues

1Department of Entomology, Volcani Center, 2Institute of Plant Sciences and Genetics in Agriculture, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, 3Department of Applied Sciences, Institute for Adriatic Crops and Karst Reclamation, 4The Institute of Plant Sciences, Volcani Center


JoVE 51030

 JoVE Immunology and Infection

A Simple and Efficient Approach to Construct Mutant Vaccinia Virus Vectors

1Center for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, 2Sino-British Research Centre for Molecular Oncology, National Center for International Research in Cell and Gene Therapy, Zhengzhou University, 3School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University


JoVE 54171

 JoVE Immunology and Infection

Early Viral Entry Assays for the Identification and Evaluation of Antiviral Compounds

1Department of Chinese Medicine, Taipei Medical University Hospital, 2Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, 3Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, 4Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University Hospital, 5Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 6Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University


JoVE 53124

 JoVE Biology

Adenofection: A Method for Studying the Role of Molecular Chaperones in Cellular Morphodynamics by Depletion-Rescue Experiments

1Département de biologie moléculaire, biochimie médicale et pathologie, Faculté de médecine, Centre de recherche sur le cancer de l'Université Laval, 2Oncology, Centre de recherche du CHU de Québec, Université Laval, 3Laboratoire d'études moléculaires des valvulopathies (LEMV), Groupe de recherche en valvulopathies (GRV), Quebec Heart and Lung Institute/Research Center, 4Department of Surgery, Université Laval


JoVE 54557

 Science Education: Essentials of Environmental Microbiology

RNA Analysis of Environmental Samples Using RT-PCR

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Reverse transcription-polymerase chain reaction (RT-PCR) involves the same process as conventional PCR — cycling temperature to amplify nucleic acids. However, while conventional PCR only amplifies deoxyribonucleic acids (DNA), RT-PCR enables the amplification of ribonucleic acids (RNA) through the formation of complementary DNA (cDNA). This enables RNA-based organisms found within the environment to be analyzed utilizing methods and technologies that are designed for DNA. Many viruses found in the environment use RNA as their genetic material. Several RNA-based viral pathogens, such as Norovirus, and indicator organisms, such as pepper mild mottle virus (PMMoV), do not have culture-based detection methods for quantification. In order to detect for the presence of these RNA viruses in environmental samples from soil, water, agriculture, etc., molecular assays rely on RT-PCR to convert RNA into DNA. Without RT-PCR, microbiologists would not be able to assay and research numerous RNA-based viruses that pose risks to human and environmental health. RT-PCR can also be employed as a tool to measure microbial activity in the env

 JoVE Immunology and Infection

Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins

1Department of Biology, San Diego State University, 2Computational Science Research Center, San Diego State University, 3Bioinformatics and Medical Informatics Research Center, San Diego State University, 4Department of Mathematics and Statistics, San Diego State University, 5Department of Computer Science, San Diego State University, 6Mathematics and Computer Science Division, Argonne National Laboratory, 7SPARC Committee, Broad Institute


JoVE 52854

 Science Education: Essentials of Environmental Microbiology

Quantifying Environmental Microorganisms and Viruses Using qPCR

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Quantitative polymerase chain reaction (qPCR), also known as real-time PCR, is a widely-used molecular technique for enumerating microorganisms in the environment. Prior to this approach, quantifying microorganisms was limited largely to classical culture-based techniques. However, the culturing of microbes from environmental samples can be particularly challenging, and it is generally held that as few as 1 to 10% of the microorganisms present within environmental samples are detectable using these techniques. The advent of qPCR in environmental microbiology research has therefore advanced the field greatly by allowing for more accurate determination of concentrations of microorganisms such as disease-causing pathogens in environmental samples. However, an important limitation of qPCR as an applied microbiological technique is that living, viable populations cannot be differentiated from inactive or non-living populations. This video demonstrates the use of qPCR to detect pepper mild mottle virus from an environmental water sample.

 Science Education: Essentials of Environmental Microbiology

Detection of Bacteriophages in Environmental Samples

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Alex Wassimi

Viruses are a unique group of biological entities that infect both eukaryotic and prokaryotic organisms. They are obligate parasites that have no metabolic capacity, and in order to replicate, rely on host metabolism to produce viral parts that self-assemble inside host cells. Viruses are ultramicroscopic—too small to be viewed with the light microscope, visible only with the greater resolution of the electron microscope. A viral particle consists of a nucleic acid genome, either DNA or RNA, surrounded by a protein coat, known as a capsid, composed of protein subunits or capsomers. In some more complex viruses, the capsid is surrounded by an additional lipid envelope, and some have spike-like surface appendages or tails. Viruses that infect the intestinal tract of humans and animals are known as enteric viruses. They are excreted in feces and can be isolated from domestic wastewater. Viruses which infect bacteria are known as bacteriophages, and those which infect coliform bacteria are called coliphages (Figure 1). The phages of coliform bacteria are found anywhere coliform bacteria are found.

 JoVE Developmental Biology

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 2Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 3Departmento de Biologìa Celular, Universidad de Valencia, 4Institut de Biomedicina de la Universitat de Barcelona (IBUB), 5Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia


JoVE 53282

 JoVE Immunology and Infection

High-throughput Quantitative Real-time RT-PCR Assay for Determining Expression Profiles of Types I and III Interferon Subtypes

1Center for Biologics Evaluation and Research, US Food and Drug Administration, 2Center for Drug Evaluation and Research, US Food and Drug Administration


JoVE 52650

12345678940
More Results...
Waiting
simple hit counter