Refine your search:

Containing Text
- - -
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
Enzymes, Immobilized: Enzymes which are immobilized on or in a variety of water-soluble or water-insoluble matrices with little or no loss of their catalytic activity. Since they can be reused continuously, immobilized enzymes have found wide application in the industrial, medical and research fields.
 JoVE Biology

Chromatin Interaction Analysis with Paired-End Tag Sequencing (ChIA-PET) for Mapping Chromatin Interactions and Understanding Transcription Regulation

1Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, 2A*STAR-Duke-NUS Neuroscience Research Partnership, Singapore, 3Department of Biochemistry, National University of Singapore, Singapore

JoVE 3770

 JoVE Chemistry

From Constructs to Crystals – Towards Structure Determination of β-barrel Outer Membrane Proteins

1Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 2National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, 3National Institute of General Medical Sciences (NIGMS), National Institutes of Health

JoVE 53245

 Science Education: Essentials of Genetics

Expression Profiling with Microarrays

JoVE Science Education

Microarrays are important tools for profiling gene expression, and are based on complementary binding between probes that are attached to glass chips and nucleic acids derived from samples. Using these arrays, scientists can simultaneously evaluate the expression of thousands of genes. In addition, the expression profiles of different cells or tissue types can be compared, allowing researchers to deduce how the expression of different genes change during biological processes, and thus gain insight into how the genes may function in pathways or networks.Here, JoVE explains the principles behind microarrays. This is followed by a general protocol for performing a microarray experiment, and a brief introduction to analyzing microarray data. We end on a discussion of how scientists are currently using microarrays, for example to compare gene expression between different cell types derived from cancerous and non-cancerous tissues, to study important biological problems.

 Science Education: Essentials of Biochemistry

Co-Immunoprecipitation and Pull-Down Assays

JoVE Science Education

Co-immunoprecipitation (CoIP) and pull-down assays are closely related methods to identify stable protein-protein interactions. These methods are related to immunoprecipitation, a method for separating a target protein bound to an antibody from unbound proteins. In CoIP, an antibody-bound protein is itself bound to another protein that does not bind with the antibody, this is followed by a separation process that preserves the protein-protein complex. The difference in pull-down assays is that affinity-tagged bait proteins replace antibodies, and affinity chromatography is used to isolate protein-protein complexes. This video explains CoIP, pull-down assays, and their implementation in the laboratory. A step-by-step protocol for each technique is covered, including the reagents, apparatus, and instruments used to purify and analyze bound proteins. Additionally, the applications section of this video describes a procedure to study how myxovirus proteins inhibit influenza nucleoprotein, an investigation into the role of calcium ions in calmodulin via a pull-down assay, and a modified pull-down assay for characterizing transient protein interactions. Protein-protein interactions play a significant role in a wide variety of biological functions. The majority of protein-protein interactions and their biological effects h

More Results...
simple hit counter