Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Food Industry: The industry concerned with processing, preparing, preserving, distributing, and serving of foods and beverages.
 JoVE Bioengineering

The Portable Chemical Sterilizer (PCS), D-FENS, and D-FEND ALL: Novel Chlorine Dioxide Decontamination Technologies for the Military

1United States Army-Natick Soldier RD&E Center, Warfighter Directorate, 2Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 3Lawrence Livermore National Laboratory, 4Children's Hospital Oakland Research Institute


JoVE 4354

 JoVE Environment

Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water

1Department of Animal Science, University of Wyoming, 2Department of Chemistry, Colorado State University, 3Department of Environmental and Radiological Health Sciences, Colorado State University, 4Department of Animal Sciences, Colorado State University, 5Department of Plant Sciences, University of California, Davis, 6Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 7Department of Food Science and Agricultural Chemistry, McGill University


JoVE 51414

 JoVE Environment

Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry

1Max Planck Institute for Molecular Plant Physiology, 2School of Biological Sciences, Plant Molecular Science, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, 3Department of Plant Systems Biology, VIB, 4Department of Plant Biotechnology and Bioinformatics, UGhent, 5Institute for Building Materials, ETH Zurich, 6Applied Wood Materials, EMPA, 7Division of Glycoscience, School of Biotechnology, AlbaNova University Center, Royal Institute of Technology (KTH), 8European Research and Project Office GmbH, 9ABBA Gaia S.L., 10Pflanzenöltechnologie, 11Capax Environmental Services, 12Green Fuels, 13Neutral Consulting Ltd, 14Plant Cell Biology Research Centre, School of Botany, University of Melbourne


JoVE 51393

 JoVE Bioengineering

Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

1The School of Plant Sciences, University of Arizona, 2Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, 3The Institute for Sustainable and Renewable Resources, The Institute for Advanced Learning and Research, 4Department of Plant, Soil and Microbial Sciences, Michigan State University


JoVE 51340

 Science Education: Essentials of Analytical Chemistry

Gas Chromatography (GC) with Flame-Ionization Detection

JoVE Science Education

Source: Laboratory of Dr. B. Jill Venton - University of Virginia

Gas chromatography (GC) is used to separate and detect small molecular weight compounds in the gas phase. The sample is either a gas or a liquid that is vaporized in the injection port. Typically, the compounds analyzed are less than 1,000 Da, because it is difficult to vaporize larger compounds. GC is popular for environmental monitoring and industrial applications because it is very reliable and can be run nearly continuously. GC is typically used in applications where small, volatile molecules are detected and with non-aqueous solutions. Liquid chromatography is more popular for measurements in aqueous samples and can be used to study larger molecules, because the molecules do not need to vaporize. GC is favored for nonpolar molecules while LC is more common for separating polar analytes. The mobile phase for gas chromatography is a carrier gas, typically helium because of its low molecular weight and being chemically inert. Pressure is applied and the mobile phase moves the analyte through the column. The separation is accomplished using a column coated with a stationary phase. Open tubular capillary columns are the most popular columns and have the stationary phase coated on the walls of the capillary. Stationary phases a

 JoVE Engineering

The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight

1School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, 2BlueScope Steel Research, 3Infrared Microspectroscopy Beamline, Australian Synchrotron, 4School of Science, College of Science, Engineering and Health, RMIT University


JoVE 54309

 JoVE Neuroscience

Intracerebroventricular Injection of Amyloid-β Peptides in Normal Mice to Acutely Induce Alzheimer-like Cognitive Deficits

1Center for Neuro-Medicine, Korea Institute of Science and Technology, 2Research Institute, GoshenBiotech, Inc., 3Department of Chemical and Biological Engineering, Princeton University, 4Biological Chemistry Program, Korea University of Science and Technology


JoVE 53308

 Science Education: Essentials of Organic Chemistry

Fractional Distillation

JoVE Science Education

Source: Laboratory of Dr. Nicolas Leadbeater — University of Connecticut 

Distillation is perhaps the most common laboratory technique employed by chemists for the purification of organic liquids. Compounds in a mixture with different boiling points separate into individual components when the mixture is carefully distilled. The two main types of distillation are "simple distillation" and "fractional distillation", and both are widely used in organic chemistry laboratories. Simple distillation is used when the liquid is (a) relatively pure (containing no more than 10% liquid contaminants), (b) has a non-volatile component, such as a solid contaminant, or (c) is mixed with another liquid with a boiling point that differs by at least 25 °C. Fractional distillation is used when separating mixtures of liquids whose boiling points are more similar (separated by less than 25 °C). This video will detail the fractional distillation of a mixture of two common organic solvents, cyclohexane and toluene.

 JoVE Engineering

Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors

1Department of Biological Systems Engineering, University of Wisconsin-Madison, 2Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University, 3Department of Mechanical Engineering, University of Wisconsin-Milwaukee, 4Department of Physics, School of Science, Tianjin University, 5Department of Chemistry, University of Wisconsin-Madison, 6School of Freshwater Sciences, University of Wisconsin-Milwaukee


JoVE 53339

12345678925
More Results...
Waiting
simple hit counter