Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Food, Organic: Food that is grown or manufactured in accordance with nationally regulated production standards that include restrictions on the use of pesticides, non-organic fertilizers, genetic engineering, growth hormones, irradiation, antibiotics, and non-organic ingredients.
 JoVE Chemistry

Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements

1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 2Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3Institute of Agriculture, Tokyo University of Agriculture and Technology


JoVE 53981

 JoVE Chemistry

HKUST-1 as a Heterogeneous Catalyst for the Synthesis of Vanillin

1Autonomous Metropolitan University-Azcapotzalco, 2Institute of Catalysis and Petroleum Chemistry, ICP-CSIC, 3Department of Chemistry, Autonomous Metropolitan University-Iztapalapa, 4Department of Chemistry, Center of Investigation and Superior Studies (IPN), 5Research Institute of Material, National Autonomous University of Mexico


JoVE 54054

 JoVE In-Press

Drosophila Preparation and Longitudinal Imaging of Heart Function In Vivo Using Optical Coherence Microscopy

1Bioengineering Program, Lehigh University, 2Center for Photonics and Nanoelectronics, Lehigh University, 3Department of Electrical and Computer Engineering, Lehigh University, 4State Key Laboratory of Software Engineering, Wuhan University, 5Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School

Video Coming Soon

JoVE 55002

 Science Education: Essentials of Earth Science

Extraction of Biomarkers from Sediments - Accelerated Solvent Extraction

JoVE Science Education

Source: Laboratory of Jeff Salacup - University of Massachusetts Amherst

The distribution of a group of organic biomarkers called glycerol-dialkyl glycerol-tetraethers (GDGTs), produced by a suite of archaea and bacteria, were found in modern sediments to change in a predictable manner in response to air or water temperature1,2. Therefore, the distribution of these biomarkers in a sequence of sediments of known age can be used to reconstruct the evolution of air and/or water temperature on decadal to millennial timescales (Figure 1). The production of long high-resolution records of past climates, called paleoclimatology, depends on the rapid analysis of hundreds, possibly thousands of samples. Older extraction techniques, such as sonication or Soxhlet, are too slow. However, the newer Accelerated Solvent Extraction technique was designed with efficiency in mind. Figure 1. An example of a paleoclimate record showing changes in sea surface temperature (SST) in the eastern Mediterranean Sea during the past ~27,000 years3. This record comprises ~115 samples and is based on the isoprenoidal GDGT-based TEX86 SS

 JoVE Environment

Extraction and Analysis of Microbial Phospholipid Fatty Acids in Soils

1Department of Renewable Resources, University of Alberta, 2Department of Science, Augustana Faculty, University of Alberta, 3Laboratoire Génie Civil et géo-Environnement, Université de Lille, 4Department of Earth and Environmental Sciences, Mount Royal University, 5Forest Ecology & Production, Great Lakes Forestry Centre, Natural Resources Canada


JoVE 54360

 Science Education: Essentials of Environmental Science

Determination Of NOx in Automobile Exhaust Using UV-VIS Spectroscopy

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

In the troposphere, ozone is naturally formed when sunlight splits nitrogen dioxide (NO2):

NO2 + sunlight → NO + O

O + O2 O3 Ozone (O3) can go on to react with nitric oxide (NO) to form nitrogen dioxide (NO2) and oxygen: NO + O3 → NO2 + O2 This results in no net gain of ozone (O3). However, with the anthropogenic production of ozone forming precursors (NO, NO2, and volatile organic compounds) through the combustion of fossil fuels, elevated levels of ozone in the troposphere have been found. Motor vehicle exhaust is a significant source of these ozone forming precursors: NO, NO2, and volatile organic compounds (VOCs). For example, mobile sources make up nearly 60% of NO + NO2 emissions. At the high temperatures found in a car’s combustion chamber, nitrogen and oxygen from the air react to form nitric oxide (NO) and nitrogen dioxide (NO2):

 JoVE Genetics

Genetic Engineering of an Unconventional Yeast for Renewable Biofuel and Biochemical Production

1Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 2NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 3Food Science and Chemical Engineering, Singapore Institute of Technology


JoVE 54371

 JoVE Environment

Colorimetric Paper-based Detection of Escherichia coli, Salmonella spp., and Listeria monocytogenes from Large Volumes of Agricultural Water

1Department of Animal Science, University of Wyoming, 2Department of Chemistry, Colorado State University, 3Department of Environmental and Radiological Health Sciences, Colorado State University, 4Department of Animal Sciences, Colorado State University, 5Department of Plant Sciences, University of California, Davis, 6Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, 7Department of Food Science and Agricultural Chemistry, McGill University


JoVE 51414

 JoVE Medicine

Quantification of the Immunosuppressant Tacrolimus on Dried Blood Spots Using LC-MS/MS

1iC42 Clinical Research and Development, University of Colorado, Anschutz Medical Campus, 2Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, 3Food and Drug Administration (FDA), Center of Drug Evaluation Research - Office of Generic Drugs, 4Transplant Clinical Research, University of Cincinnati


JoVE 52424

 Science Education: Essentials of Environmental Microbiology

Culturing and Enumerating Bacteria from Soil Samples

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Authors: Bradley Schmitz and Luisa Ikner

Surface soils are a heterogeneous mixture of inorganic and organic particles that combine together to form secondary aggregates. Within and between the aggregates are voids or pores that visually contain both air and water. These conditions create an ideal ecosystem for bacteria, so all soils contain vast populations of bacteria, usually over 1 million per gram of soil. Bacteria are the simplest of microorganisms, known as prokaryotes. Within this prokaryotic group, there are the filamentous microbes known as actinomycetes. Actinomycetes are actually bacteria, but they are frequently considered to be a unique group within the classification of bacteria because of their filamentous structure, which consists of multiple cells strung together to form hyphae. This experiment uses glycerol case media that select for actinomycete colonies, during dilution and plating. Typically, actinomycetes are approximately 10% of the total bacterial population. Bacteria and actinomycetes are found in every environment on Earth, but the abundance and diversity of these microbes in soil is unparalleled. These microbes are also essential for human life and affect what people eat

 Science Education: Essentials of Environmental Microbiology

Algae Enumeration via Culturable Methodology

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Algae are a highly heterogeneous group of microorganisms that have one common trait, namely the possession of photosynthetic pigments. In the environment, algae can cause problems for swimming pool owners by growing in the water. Algae can also cause problems in surface waters, such as lakes and reservoirs, due to algal blooms that release toxins. More recently, algae are being evaluated as novel sources of energy via algal biofuels. Blue-green algae are actually bacteria classified as cyanobacteria. Cyanobacteria not only photosynthesize, but also have the ability to fix nitrogen gas from the atmosphere. Other algae are eukaryotic, ranging from single-celled organisms to complex multicellular organisms, like seaweeds. These include the green algae, the euglenoids, the dinoflagellates, the golden brown algae, diatoms, the brown algae, and the red algae. In soils, algal populations are frequently 106 per gram. These numbers are lower than corresponding numbers for bacteria, actinomycetes, and fungi, mostly because the sunlight required for photosynthesis cannot penetrate far beneath the soil surface. Because algae are phototrophic, obtaining energy from photosyn

12345678932
More Results...
Waiting
simple hit counter