Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Hearing Loss, Functional: Hearing loss without a physical basis. Often observed in patients with psychological or behavioral disorders.
 JoVE Behavior

Neuro-rehabilitation Approach for Sudden Sensorineural Hearing Loss

1Department of Integrative Physiology, National Institute for Physiological Sciences, 2Department of Otolaryngology, Head and Neck Surgery, Nagoya City University Graduate School of Medical Sciences and Medical School, 3Department of Otorhinolaryngology, Kansai Rosai Hospital, 4Institute for Biomagnetism and Biosignalanalysis, University of Muenster, 5Institute for Epidemiology and Social Medicine, University of Muenster, 6Sokendai Graduate University for Advanced Studies


JoVE 53264

 JoVE In-Press

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

1Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM, 2Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 3Instituto de Investigación Sanitaria La Paz (IdiPAZ), 4Facultad de Veterinaria, Universidad Complutense de Madrid, 5Departmento de Otorrino laringología, Hospital Universitario La Paz

Video Coming Soon

JoVE 54951

 JoVE Neuroscience

A Behavioral Assay for Mechanosensation of MARCM-based Clones in Drosophila melanogaster

1Department of Biology, College of the Holy Cross, 2School of Medicine, Georgetown University, 3Department of Biochemistry, Giesel School of Medicine, Dartmouth College, 4School of Medicine, Tufts University, 5Transgenomic Inc., 6Department of Molecular, Cell and Cancer Biology, UMass Medical School


JoVE 53537

 JoVE Medicine

A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy

1Department of Neurology, Harvard Medical School, 2Department of Neurology, Beth Israel Deaconess Medical Center, 3Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 4Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 5Department of Neurology, Massachusetts General Hospital


JoVE 53727

 JoVE Behavior

Flat-floored Air-lifted Platform: A New Method for Combining Behavior with Microscopy or Electrophysiology on Awake Freely Moving Rodents

1Neuroscience Center, University of Helsinki, 2Neurotar LTD, 3A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 4Laboratory Animal Center, University of Helsinki


JoVE 51869

 JoVE Medicine

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital


JoVE 54017

 JoVE Behavior

Simultaneous Scalp Electroencephalography (EEG), Electromyography (EMG), and Whole-body Segmental Inertial Recording for Multi-modal Neural Decoding

1Functional and Applied Biomechanics Group, National Institutes of Health, 2Laboratory for Non-invasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, 3Department of Health and Human Performance, University of Houston, 4Center for Neuromotor & Biomechanics Research, University of Houston, 5Department of Biomedical Engineering, University of Houston


JoVE 50602

 JoVE Neuroscience

Extracellular Recording of Neuronal Activity Combined with Microiontophoretic Application of Neuroactive Substances in Awake Mice

1Auditory Neuroscience Laboratory, Institute of Neuroscience of Castilla y León, University of Salamanca, 2Neural Systems Laboratory, Institute for Systems Research, University of Maryland, 3Medical Research Council Institute of Hearing Research, 4Department of Cell Biology and Pathology, Faculty of Medicine, University of Salamanca


JoVE 53914

 JoVE Neuroscience

Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis

1Institute of Neurophysiology and Cellular Biophysics, Georg-August-Universität Göttingen, 2Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Georg-August-Universität Göttingen, 3DFG Excellence Cluster 171, Georg-August-Universität Göttingen, 4German Hearing Center Hannover


JoVE 54108

 JoVE Medicine

Pharmacologic Induction of Epidermal Melanin and Protection Against Sunburn in a Humanized Mouse Model

1The Markey Cancer Center, University of Kentucky College of Medicine, 2Graduate Center for Toxicology, University of Kentucky College of Medicine, 3Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, 4Department of Pediatrics, University of Kentucky College of Medicine


JoVE 50670

 JoVE Medicine

Techniques for Processing Eyes Implanted with a Retinal Prosthesis for Localized Histopathological Analysis: Part 2 Epiretinal Implants with Retinal Tacks

1Bionics Institute, 2Department of Pathology, The University of Melbourne, 3Cochlear Limited, 4Department of Anatomical Pathology, St Vincent's Hospital Melbourne, 5Medical Bionics Department, The University of Melbourne


JoVE 52348

 JoVE Neuroscience

Isolating Nasal Olfactory Stem Cells from Rodents or Humans

1NICN, Aix Marseille University, 2LNPM, Aix Marseille University, 3ENT Department, Aix Marseille University, 4Gene expression Laboratory, The Salk Institute for Biological Studies, 5Laboratory of Speech and Language, Aix Marseille University, 6Centre d'Investigations Cliniques en Biothérapie, Aix Marseille University


JoVE 2762

 Science Education: Essentials of Developmental Psychology

Memory Development: Demonstrating How Repeated Questioning Leads to False Memories

JoVE Science Education

Source: Laboratories of Judith Danovitch and Nicholaus Noles—University of Louisville

A person is defined as a unique individual based on the people and events they encounter in their lives. Thus, creating, storing, and recalling memories are essential elements of the human experience. However, memory, as adults experience it, takes time to develop. Although young children can learn facts and remember details of their lives from moment-to-moment and day-to-day, they do not create autobiographical memories or detailed memories of events that happen in their lives until age 3 or older. Even after age 3, children’s memories differ from those of adults in important ways. Children are less effective at evaluating their own memories than adults, which makes it difficult for them to determine, for example, whether or not their memories are accurate. False memories are a problem for both children and adults, as it is quite easy to create a false memory with a poorly-worded question or a story repeated over and over. However, young children are more susceptible to creating false memories than either older children or adults. This video demonstrates children’s vulnerability to false memories using a method developed by Steven Ceci and his collaborators.1-2

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations II

Ear Exam

JoVE Science Education

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

This video describes the examination of the ear, beginning with a review of its surface and interior anatomy (Figure 1). The cartilaginous auricle consists of the helix, antihelix, earlobe, and tragus. The mastoid process is positioned just behind the earlobe. The slightly curving auditory canal ends at the tympanic membrane, which transmits sound waves collected by the external ear to the air-filled middle ear. The Eustachian tube connects to the middle ear with the nasopharynx. Vibrations of the tympanic membrane transmit to the three connected ossicles of the middle ear (the malleus, incus, and stapes). The vibrations are transformed into electrical signals in the inner ear, and then carried to the brain by the cochlear nerve. Hearing, therefore, comprises a conductive phase that involves the external and middle ear, and a sensorineural phase that involves the inner ear and cochlear nerve. The auditory canal and the tympanic membrane are examined with the otoscope, a handheld instrument with a light source, a magnifier, and a disposable cone-shaped speculum. It is important to be familiar with the tympanic membrane landmarks (

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Sensation and Perception

The Staircase Procedure for Finding a Perceptual Threshold

JoVE Science Education

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

Psychophysics is the name for a set of methods in perceptual psychology designed in order to relate the actual intensity of stimuli to their perceptual intensity. One important aspect of psychophysics involves the measurement of perceptual thresholds: How bright does a light need to be for a person to be able to detect it? How little pressure applied to the skin is detectable? How soft can a sound be and still be heard? Put another way, what are the smallest amounts of stimulation that humans can sense? The staircase procedure is an efficient technique for identifying a person's perceptual threshold. This video will demonstrate standard methods for applying the staircase procedure in order to identify a person's auditory threshold, that is, the minimal volume necessary for a tone to be perceived.

Results below contain some, but not all of your search terms.
 JoVE Neuroscience

Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI

1Department of Physiology and Pharmacology, University of Western Ontario, 2Department of Psychology, University of Western Ontario, 3Department of Medical Biophysics, University of Western Ontario, 4Brain and Mind Institute, University of Western Ontario, 5Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 6Cerebral Systems Laboratory, University of Western Ontario, 7National Centre for Audiology, University of Western Ontario


JoVE 50872

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations III

Cranial Nerves Exam II (VII-XII)

JoVE Science Education

Source: Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA

The cranial nerve (CN) examination follows the mental status evaluation in a neurological exam. However, the examination of the cranial nerves begins with observations made upon greeting the patient. For example, weakness of the facial muscles that are innervated by the cranial nerve VII can be readily apparent during the first encounter with the patient. Cranial nerve VII, the Facial nerve, also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in the patient with facial weakness confirms the involvement of CN VII. In addition, knowledge of the neuroanatomy helps the clinician to localize level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve, manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII, the Acoustic nerve, has two divisions: the hearing (cochlear) division, and the vestibular division, which innervates the semicirc

Results below contain some, but not all of your search terms.
 JoVE Neuroscience

Optogenetic Stimulation of the Auditory Nerve

1InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen, 2Bernstein Focus for Neurotechnology, University of Goettingen, 3Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen, 4Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Goettingen, 5Department of Chemical, Electronic, and Biomedical Engineering, University of Guanajuato


JoVE 52069

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
12345678974
More Results...
Waiting
simple hit counter