Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Hypoxia, Brain: A reduction in brain oxygen supply due to Anoxemia (a reduced amount of oxygen being carried in the blood by Hemoglobin), or to a restriction of the blood supply to the brain, or both. Severe hypoxia is referred to as anoxia, and is a relatively common cause of injury to the central nervous system. Prolonged brain anoxia may lead to Brain death or a Persistent vegetative state. Histologically, this condition is characterized by neuronal loss which is most prominent in the Hippocampus; Globus pallidus; Cerebellum; and inferior olives.
 JoVE In-Press

In Vivo Model for Testing Effect of Hypoxia on Tumor Metastasis

1Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, 2Department of Nursing, Georgetown University, School of Nursing and Health Studies, 3Department of Human Science, Georgetown University, School of Nursing and Health Studies, 4School of Medicine, Georgetown University Medical Center, 5Department of Pathology and Neuropathology, Medical University of Gdańsk, 6Department of Oncology, Georgetown University Medical Center, 7Department of Pathology, Georgetown University Medical Center

Video Coming Soon

JoVE 54532

 JoVE Biology

The c-FOS Protein Immunohistological Detection: A Useful Tool As a Marker of Central Pathways Involved in Specific Physiological Responses In Vivo and Ex Vivo

1Sorbonne Paris Cité, Laboratory “Hypoxia & Lung” EA2363, University Paris 13, 2UPMC Univ Paris 06, INSERM, UMR_S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Sorbonne Universités, 3Laboratory of Excellence GR-Ex, 4Laboratory MOVE (EA 6314), University of Poitiers


JoVE 53613

 JoVE In-Press

A Model to Simulate Clinically Relevant Hypoxia in Humans

1Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Bonn, 2Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 3Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 4Institute of Physiology 2, University of Bonn

Video Coming Soon

JoVE 54933

 JoVE Developmental Biology

Instrumentation of Near-term Fetal Sheep for Multivariate Chronic Non-anesthetized Recordings

1Département de sciences cliniques, CHUV, Université de Montréal, St-Hyacinthe, QC, 2Département d'obstetriques et de gynécologie, CHU Ste-Justine Research Centre, Université de Montréal, 3Département de neurosciences, CHU Ste-Justine Centre de recherche, Université de Montréal, 4Centre de recherche en reproduction animale (CRRA), Université de Montréal, St-Hyacinthe, QC


JoVE 52581

 JoVE Neuroscience

Detection of Microregional Hypoxia in Mouse Cerebral Cortex by Two-photon Imaging of Endogenous NADH Fluorescence

1Department of Microbiology and Immunology, University of Rochester Medical Center, 2Center for Neural Development and Disease, University of Rochester Medical Center, 3Deptartment of Neurology, Center for Neural Development and Disease, University of Rochester Medical Center


JoVE 3466

 JoVE In-Press

Utilizing Functional Genomics Screening to Identify Potentially Novel Drug Targets in Cancer Cell Spheroid Cultures

1The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, 2Division of Molecular Pathology, The Institute of Cancer Research, 3Institute of Cancer Sciences, University of Manchester

Video Coming Soon

JoVE 54738

 JoVE Neuroscience

Derivation of Glial Restricted Precursors from E13 mice

1Hugo W. Moser Research Institute at Kennedy Krieger, Johns Hopkins University, 2Department of Neurology, Johns Hopkins School of Medicine, 3University of Maryland, 4Experimental Neurology, Biogen Idec, 5The Brain Science Institute, Johns Hopkins School of Medicine, 6Department of Pediatrics, Johns Hopkins School of Medicine


JoVE 3462

 JoVE Medicine

Non-invasive Imaging and Analysis of Cerebral Ischemia in Living Rats Using Positron Emission Tomography with 18F-FDG

1W. M. Keck Center for Transgene Research, University of Notre Dame, 2Department of Chemistry and Biochemistry, University of Notre Dame, 3Notre Dame Integrated Imaging Facility, University of Notre Dame, 4Department of Biological Sciences, University of Notre Dame, 5Harper Cancer Research Institute, University of Notre Dame


JoVE 51495

 JoVE Medicine

Automated Measurement of Microcirculatory Blood Flow Velocity in Pulmonary Metastases of Rats

1Division of Plastic, Maxillofacial, and Oral Surgery, Duke University Medical Center, 2Department of Radiation Oncology, Duke University Medical Center, 3Department of Cardiology, University of Colorado Denver, 4Department of Physical Chemistry, University of Mainz


JoVE 51630

 JoVE Medicine

Murine Spinotrapezius Model to Assess the Impact of Arteriolar Ligation on Microvascular Function and Remodeling

1Department of Biomedical Engineering, University of Virginia, 2Department of Biomedical Engineering, California Polytechnic State University, 3Office of Animal Welfare, University of Virginia, 4Department of Biomedical Engineering & Institute for Computational Medicine, Johns Hopkins University


JoVE 50218

 JoVE Immunology and Infection

Human Placental and Decidual Organ Cultures to Study Infections at the Maternal-fetal Interface

1Benioff Children’s Hospital, 2Department of Pathology, University of California, San Francisco, 3Center for Reproductive Sciences and Department of Obstetrics, University of California, San Francisco, 4Program in Microbial Pathogenesis and Host Defense, University of California, San Francisco, 5Biomedical Sciences Program, University of California, San Francisco


JoVE 54237

 Science Education: Essentials of Lab Animal Research

Sterile Tissue Harvest

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

In 1959 The 3 R's were introduced by W.M.S. Russell and R.L. Burch in their book The Principles of Humane Experimental Technique. The 3 R's are replacement, reduction, and refinement of the use of animals in research.1 The use of cell lines and tissue cultures that originated from research animals is a replacement technique, as it allows for many experiments to be conducted in vitro. Harvesting tissues and organs for use in cell and tissue cultures requires aseptic technique to avoid contamination of the tissues. Sterile harvest is also necessary for protein and RNA analysis and metabolic profiling of tissues. This manuscript will discuss the process of sterile organ harvest in rats and mice.

12345678942
More Results...
Waiting
simple hit counter