JoVE   
You have subscription access to articles in this section through JoVE.

  JoVE Biology

  
You have subscription access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have subscription access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have subscription access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have trial access to videos in this collection until May 31, 2014.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
 JoVE Biology

Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy

1Department of Physics and Astronomy, University of Maine


JoVE 50680

We demonstrate the use of fluorescence photo activation localization microscopy (FPALM) to simultaneously image multiple types of fluorescently labeled molecules within cells. The techniques described yield the localization of thousands to hundreds of thousands of individual fluorescent labeled proteins, with a precision of tens of nanometers within single cells.

 JoVE Clinical and Translational Medicine

Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases

1Department of Neurology, University of Ulm


JoVE 50427

Diffusion tensor imaging (DTI) basically serves as an MRI-based tool to identify in vivo the microstructure of the brain and pathological processes due to neurological disorders within the cerebral white matter. DTI-based analyses allow for application to brain diseases both at the group level and in single subject data.

 JoVE Biology

Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

1Institute for Clinical Neurobiology, University of Wuerzburg, 2Department of Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, 3Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University of Munich


JoVE 50317

Targeted-esterase induced dye loading (TED) supports the analysis of intracellular calcium store dynamics by fluorescence imaging. The method bases on targeting of a recombinant Carboxylesterase to the endoplasmic reticulum (ER), where it improves the local unmasking of synthetic low-affinity Ca2+ indicator dyes in the ER lumen.

 JoVE Bioengineering

Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae

1Department of Molecular, Cellular and Developmental Biology, University of Michigan, 2Department of Biomedical Engineering, University of Michigan, 3Life Sciences Institute, University of Michigan, 4Department of Cell and Developmental Biology, University of Michigan, 5Department of Mechanical Engineering, University of Michigan


JoVE 50998

Drosophila larvae are an attractive model system for live imaging due to their translucent cuticle and powerful genetics. This protocol describes how to utilize a single-layer PDMS device, called the 'larva chip' for live imaging of cellular processes within neurons of 3rd instar Drosophila larvae.

 JoVE Clinical and Translational Medicine

Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer

1Watson School of Biological Sciences, 2Cold Spring Harbor Laboratory, 3Departments of Medical Genetics, University of Oslo and Oslo University Hospital


JoVE 50088

We describe a method for imaging response to anti-cancer treatment in vivo and at single cell resolution.

 JoVE Bioengineering

Optical Frequency Domain Imaging of Ex vivo Pulmonary Resection Specimens: Obtaining One to One Image to Histopathology Correlation

1Department of Pathology, Harvard Medical School, 2Massachusetts General Hospital, 3Wellman Center for Photomedicine, Harvard Medical School, 4Pulmonary and Critical Care Unit, Massachusetts General Hospital, 5Pulmonary and Critical Care Unit, Harvard Medical School


JoVE 3855

A method to image ex vivo pulmonary resection specimens with optical frequency domain imaging (OFDI) and obtain precise correlation to histology is described, which is essential to developing specific OFDI interpretation criteria for pulmonary pathology. This method is applicable to other tissue types and imaging techniques to obtain precise imaging to histology correlation for accurate image interpretation and assessment. Imaging criteria established with this technique would then be applicable to image assessment in future in vivo studies.

 JoVE Neuroscience

Targeted Labeling of Neurons in a Specific Functional Micro-domain of the Neocortex by Combining Intrinsic Signal and Two-photon Imaging

1Department of Neuroscience, Medical University of South Carolina


JoVE 50025

A method is described for labeling neurons with fluorescent dyes in predetermined functional micro-domains of the neocortex. First, intrinsic signal optical imaging is used to obtain a functional map. Then two-photon microscopy is used to label and image neurons within a micro-domain of the map.

 JoVE Immunology and Infection

4D Multimodality Imaging of Citrobacter rodentium Infections in Mice

1MRC Centre for Molecular Bacteriology and Infection, Division of Cell & Molecular Biology, Imperial College London, 2Preclinical Imaging, Caliper- A PerkinElmer Company


JoVE 50450

Multi-modality imaging is a valuable approach for studying bacterial colonization in small animal models. This protocol outlines infection of mice with bioluminescent Citrobacter rodentium and the longitudinal monitoring of bacterial colonization using composite 3D diffuse light imaging tomography with μCT imaging to create a 4D movie of C. rodentium infection.

 JoVE Biology

Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

1University of Victoria-Genome BC Proteomics Centre, University of Victoria, 2Department of Biochemistry and Microbiology, University of Victoria


JoVE 50733

Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging of small molecules; protocols for the use of DT for the MALDI imaging of endogenous lipids on the surface of tissue sections by positive-ion MALDI-MS on an ultrahigh-resolution quadrupole-FTICR instrument are provided here.

 JoVE Neuroscience

In vivo Neuronal Calcium Imaging in C. elegans

1Department of Physiology and Biophysics, Boston University School of Medicine, 2Boston University Photonics Center


JoVE 50357

With its small transparent body, well-documented neuroanatomy and a host of amenable genetic techniques and reagents, C. elegans makes an ideal model organism for in vivo neuronal imaging using relatively simple, low-cost techniques. Here we describe single neuron imaging within intact adult animals using genetically encoded fluorescent calcium indicators.

More Results...
Waiting
simple hit counter