You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology


Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
 JoVE Biology

Simultaneous Multicolor Imaging of Biological Structures with Fluorescence Photoactivation Localization Microscopy

1Department of Physics and Astronomy, University of Maine

JoVE 50680

We demonstrate the use of fluorescence photo activation localization microscopy (FPALM) to simultaneously image multiple types of fluorescently labeled molecules within cells. The techniques described yield the localization of thousands to hundreds of thousands of individual fluorescent labeled proteins, with a precision of tens of nanometers within single cells.

 JoVE Bioengineering

Biofunctionalized Prussian Blue Nanoparticles for Multimodal Molecular Imaging Applications

1The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, 2Fischell Department of Bioengineering, University of Maryland, 3Department of Radiology, George Washington University, 4Department of Pediatrics, George Washington University

JoVE 52621

This protocol describes the synthesis of biofunctionalized Prussian blue nanoparticles and their use as multimodal, molecular imaging agents. The nanoparticles have a core-shell design where gadolinium or manganese ions within the nanoparticle core generate MRI contrast. The biofunctional shell contains fluorophores for fluorescence imaging and targeting ligands for molecular targeting.

 JoVE Developmental Biology

Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound

1Department of Medical Biophysics, University of Toronto, 2Sunnybrook Research Institute, 3Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto

JoVE 52520

Here, we present a protocol to inject ultrasound microbubble contrast agents into living, isolated late-gestation stage murine embryos. This method enables the study of perfusion parameters and of vascular molecular markers within the embryo using contrast-enhanced high-frequency ultrasound imaging.

 JoVE Bioengineering

Fluorescence-quenching of a Liposomal-encapsulated Near-infrared Fluorophore as a Tool for In Vivo Optical Imaging

1Experimental Radiology, Institute of Diagnostic and Interventional Radiology I, Jena University Hospital, 2Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, 3Center for Electron Microscopy, Jena University Hospital

JoVE 52136

The use of fluorophores for in vivo imaging can be greatly limited by opsonization, rapid clearance, low detection sensitivity and cytotoxic effects on the host. Encapsulation of fluorophores in liposomes by film hydration and extrusion leads to fluorescence quenching and protection which enables in vivo imaging with high detection sensitivity.

 JoVE Medicine

Diffusion Tensor Magnetic Resonance Imaging in the Analysis of Neurodegenerative Diseases

1Department of Neurology, University of Ulm

JoVE 50427

Diffusion tensor imaging (DTI) basically serves as an MRI-based tool to identify in vivo the microstructure of the brain and pathological processes due to neurological disorders within the cerebral white matter. DTI-based analyses allow for application to brain diseases both at the group level and in single subject data.

 JoVE Biology

Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)

1Institute for Clinical Neurobiology, University of Wuerzburg, 2Department of Synapses - Circuits - Plasticity, Max Planck Institute of Neurobiology, Martinsried, 3Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians University of Munich

JoVE 50317

Targeted-esterase induced dye loading (TED) supports the analysis of intracellular calcium store dynamics by fluorescence imaging. The method bases on targeting of a recombinant Carboxylesterase to the endoplasmic reticulum (ER), where it improves the local unmasking of synthetic low-affinity Ca2+ indicator dyes in the ER lumen.

 JoVE Medicine

High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

1Department of Bioengineering, University of Illinois at Chicago, 2Department of Pathology, University of Illinois at Chicago, 3Department of Biological Sciences, University of Illinois at Chicago, 4Department of Chemistry, University of Illinois at Chicago, 5Department of Nephrology, University of Illinois at Chicago

JoVE 52332

Fourier Transform Infrared (FT-IR) spectroscopic imaging is a fast and label-free approach to obtain biochemical data sets of cells and tissues. Here, we demonstrate how to obtain high-definition FT-IR images of tissue sections towards improving disease diagnosis.

 JoVE Bioengineering

Using Microfluidics Chips for Live Imaging and Study of Injury Responses in Drosophila Larvae

1Department of Molecular, Cellular and Developmental Biology, University of Michigan, 2Department of Biomedical Engineering, University of Michigan, 3Life Sciences Institute, University of Michigan, 4Department of Cell and Developmental Biology, University of Michigan, 5Department of Mechanical Engineering, University of Michigan

JoVE 50998

Drosophila larvae are an attractive model system for live imaging due to their translucent cuticle and powerful genetics. This protocol describes how to utilize a single-layer PDMS device, called the 'larva chip' for live imaging of cellular processes within neurons of 3rd instar Drosophila larvae.

 JoVE Medicine

Validation of Nanobody and Antibody Based In Vivo Tumor Xenograft NIRF-imaging Experiments in Mice Using Ex Vivo Flow Cytometry and Microscopy

1Department of Diagnostic and Interventional Radiology, University Medical Center, Hamburg, 2Institute of Immunology, University Medical Center, Hamburg, 3University Cancer Center Hamburg, University Medical Center, Hamburg, 4Department of Oncology and Hematology, University Medical Center, Hamburg

JoVE 52462

This protocol outlines the steps required to perform ex vivo validation of in vivo near-infrared fluorescence xenograft imaging experiments in mice using fluorophore labelled nanobodies and conventional antibodies.

 JoVE Medicine

Live Imaging of Drug Responses in the Tumor Microenvironment in Mouse Models of Breast Cancer

1Watson School of Biological Sciences, 2Cold Spring Harbor Laboratory, 3Departments of Medical Genetics, University of Oslo and Oslo University Hospital

JoVE 50088

We describe a method for imaging response to anti-cancer treatment in vivo and at single cell resolution.

 JoVE Neuroscience

Live Imaging of Drosophila Larval Neuroblasts

1National Heart, Lung, and Blood Institute, National Institutes of Health

JoVE 51756

This protocol details a streamlined method used to conduct live cell imaging in the context of an intact larval brain. Live cell imaging approaches are invaluable for the study of asymmetric neural stem cell divisions as well as other neurogenic and developmental processes, consistently uncovering mechanisms that were previously overlooked.

 JoVE Medicine

Tracking the Mammary Architectural Features and Detecting Breast Cancer with Magnetic Resonance Diffusion Tensor Imaging

1Department of Biological Regulation, Weizmann Institute of Science, 2Unit of Biological Services, Weizmann Institute of Science, 3Department of Diagnostic Imaging, Meir Medical Center, 4Pathology Department, Meir Medical Center

JoVE 52048

We describe how to obtain parametric and vector maps of the diffusion tensor of the breast using magnetic resonance imaging. The protocol and final output following imaging processing are tailored for tracking breast architectural features and detecting breast malignancy.

 JoVE Medicine

Cerenkov Luminescence Imaging of Interscapular Brown Adipose Tissue

1Molecular Imaging Laboratory, MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, 2Center for Drug Discovery, School of Pharmacy, China Pharmaceutical University, 3Perkin Elmer

JoVE 51790

In this video report, we show the application of Cerenkov Luminescence Imaging (CLI) for interscapular brown adipose tissue in mice under activated and depressed conditions.

 JoVE Medicine

Combined In vivo Optical and µCT Imaging to Monitor Infection, Inflammation, and Bone Anatomy in an Orthopaedic Implant Infection in Mice

1Orthopaedic Hospital Research Center, Orthopaedic Hospital Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California, Los Angeles (UCLA), 2PerkinElmer, 3Department of Dermatology, Johns Hopkins University School of Medicine, 4Department of Medicine, Division of Infectious Diseases, Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine

JoVE 51612

Combined optical and μCT imaging in a mouse model of orthopaedic implant infection, utilizing a bioluminescent engineered strain of Staphylococcus aureus, provided the capability to noninvasively and longitudinally monitor the dynamics of the bacterial infection, as well as the corresponding inflammatory response and anatomical changes in the bone.

 JoVE Biology

Identification of a Murine Erythroblast Subpopulation Enriched in Enucleating Events by Multi-spectral Imaging Flow Cytometry

1Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 2IBM

JoVE 50990

The present protocol describes a novel method of identifying a population of enucleating orthochromatic erythroblasts by multi-spectral imaging flow cytometry, providing a visualization of the erythroblast enucleation process.

 JoVE Bioengineering

Optical Frequency Domain Imaging of Ex vivo Pulmonary Resection Specimens: Obtaining One to One Image to Histopathology Correlation

1Department of Pathology, Harvard Medical School, 2Massachusetts General Hospital, 3Wellman Center for Photomedicine, Harvard Medical School, 4Pulmonary and Critical Care Unit, Massachusetts General Hospital, 5Pulmonary and Critical Care Unit, Harvard Medical School

JoVE 3855

A method to image ex vivo pulmonary resection specimens with optical frequency domain imaging (OFDI) and obtain precise correlation to histology is described, which is essential to developing specific OFDI interpretation criteria for pulmonary pathology. This method is applicable to other tissue types and imaging techniques to obtain precise imaging to histology correlation for accurate image interpretation and assessment. Imaging criteria established with this technique would then be applicable to image assessment in future in vivo studies.

 JoVE Medicine

In Vivo Dynamics of Retinal Microglial Activation During Neurodegeneration: Confocal Ophthalmoscopic Imaging and Cell Morphometry in Mouse Glaucoma

1Department of Neurobiology & Anatomy, University of Utah, 2Department of Ophthalmology & Visual Sciences, University of Utah

JoVE 52731

Microglia activation and microgliosis are key responses to chronic neurodegeneration. Here, we present methods for in vivo, long-term visualization of retinal CX3CR1-GFP+ microglial cells by confocal ophthalmoscopy, and for threshold and morphometric analyses to identify and quantify their activation. We monitor microglial changes during early stages of age-related glaucoma.

 JoVE Immunology and Infection

Long Term Intravital Multiphoton Microscopy Imaging of Immune Cells in Healthy and Diseased Liver Using CXCR6.Gfp Reporter Mice

1Department of Medicine III, RWTH University-Hospital Aachen, 2IZKF Aachen Core Facility "Two-Photon Imaging", RWTH University-Hospital Aachen, 3Institute for Laboratory Animal Science & Experimental Surgery, RWTH Aachen University, 4Institute for Pharmacology, RWTH University-Hospital Aachen

JoVE 52607

Stable intravital high-resolution imaging of immune cells in the liver is challenging. Here we provide a highly sensitive and reliable method to study migration and cell-cell-interactions of immune cells in mouse liver over long periods (about 6 hours) by intravital multiphoton laser scanning microscopy in combination with intensive care monitoring.

 JoVE Neuroscience

Targeted Labeling of Neurons in a Specific Functional Micro-domain of the Neocortex by Combining Intrinsic Signal and Two-photon Imaging

1Department of Neuroscience, Medical University of South Carolina

JoVE 50025

A method is described for labeling neurons with fluorescent dyes in predetermined functional micro-domains of the neocortex. First, intrinsic signal optical imaging is used to obtain a functional map. Then two-photon microscopy is used to label and image neurons within a micro-domain of the map.

 JoVE Biology

Super-resolution Imaging of the Cytokinetic Z Ring in Live Bacteria Using Fast 3D-Structured Illumination Microscopy (f3D-SIM)

1The ithree Institute, University of Technology, Sydney

JoVE 51469

Spatiotemporal information about dynamic proteins inside live cells is crucial for understanding biology. A type of super-resolution microscopy called fast 3D-structured illumination microscopy (f3D-SIM) reveals unique information about the cytokinetic Z ring in bacteria: both its bead-like appearance and the rapid dynamics of FtsZ within the ring.

 JoVE Medicine

High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes

1Department of Neurobiology and Anatomy, West Virginia University, 2Animal Models and Imaging Facility, West Virginia University, 3Mary Babb Randolph Cancer Center, West Virginia University

JoVE 52718

This protocol describes the application of high-frequency ultrasound (HFUS) for imaging mouse cervical lymph nodes. This technique optimizes visualization and quantification of cervical lymph node morphology, volume and blood flow. Image-guided biopsy of cervical lymph nodes and processing of lymph tissue for histological evaluation is also demonstrated.

 JoVE Immunology and Infection

4D Multimodality Imaging of Citrobacter rodentium Infections in Mice

1MRC Centre for Molecular Bacteriology and Infection, Division of Cell & Molecular Biology, Imperial College London, 2Preclinical Imaging, Caliper- A PerkinElmer Company

JoVE 50450

Multi-modality imaging is a valuable approach for studying bacterial colonization in small animal models. This protocol outlines infection of mice with bioluminescent Citrobacter rodentium and the longitudinal monitoring of bacterial colonization using composite 3D diffuse light imaging tomography with μCT imaging to create a 4D movie of C. rodentium infection.

 JoVE Neuroscience

Non-invasive Parenchymal, Vascular and Metabolic High-frequency Ultrasound and Photoacoustic Rat Deep Brain Imaging

1Center for Preclinical Imaging, Department of Molecular Biotechnology and Health Sciences, University of Turin, 2Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, 3Bracco Research Center, Bracco Imaging SpA

JoVE 52162

The present work describes a new protocol to perform non-invasive high-frequency ultrasound and photoacoustic based imaging on rat brain, to efficiently visualize deep subcortical regions and their vascular patterns by directing signals on skull foramina naturally present on animal cranium.

 JoVE Neuroscience

Live Imaging of Mitosis in the Developing Mouse Embryonic Cortex

1Department of Molecular Genetics and Microbiology, Duke University Medical Center, 2Departments of Neurobiology and Cell Biology, Duke Institute for Brain Sciences, Duke University Medical Center

JoVE 51298

Neural progenitor mitosis is a critical parameter of neurogenesis. Much of our understanding of neural progenitor mitosis is based on analysis of fixed tissue. Live imaging in embryonic brain slices is a versatile technique to assess mitosis with high temporal and spatial resolution in a controlled environment.

 JoVE Biology

Preparation, Imaging, and Quantification of Bacterial Surface Motility Assays

1Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 2Eck Institute for Global Health, University of Notre Dame, 3Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, 4INRS-Institut Armand-Frappier, 5Department of Biology, Indiana University, 6Department of Biological Sciences, University of Notre Dame

JoVE 52338

Swarming motility is influenced by physical and environmental factors. We describe a two-phase protocol and guidelines to circumvent the challenges commonly associated with swarm assay preparation and data collection. A macroscopic imaging technique is employed to obtain detailed information on swarm behavior that is not provided by current analysis techniques.

 JoVE Biology

Dithranol as a Matrix for Matrix Assisted Laser Desorption/Ionization Imaging on a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer

1University of Victoria-Genome BC Proteomics Centre, University of Victoria, 2Department of Biochemistry and Microbiology, University of Victoria

JoVE 50733

Dithranol (DT; 1,8-dihydroxy-9,10-dihydroanthracen-9-one) has previously been reported as a MALDI matrix for tissue imaging of small molecules; protocols for the use of DT for the MALDI imaging of endogenous lipids on the surface of tissue sections by positive-ion MALDI-MS on an ultrahigh-resolution quadrupole-FTICR instrument are provided here.

 JoVE Neuroscience

In vivo Neuronal Calcium Imaging in C. elegans

1Department of Physiology and Biophysics, Boston University School of Medicine, 2Boston University Photonics Center

JoVE 50357

With its small transparent body, well-documented neuroanatomy and a host of amenable genetic techniques and reagents, C. elegans makes an ideal model organism for in vivo neuronal imaging using relatively simple, low-cost techniques. Here we describe single neuron imaging within intact adult animals using genetically encoded fluorescent calcium indicators.

 JoVE Immunology and Infection

Live Cell Imaging of Alphaherpes Virus Anterograde Transport and Spread

1Department of Immunology and Infectious Diseases, Montana State University, 2Department of Molecular Biology, Princeton University

JoVE 50723

Live cell imaging of alphaherpes virus infections enables analysis of the dynamic events of directed transport and intercellular spread. Here, we present methodologies that utilize recombinant viral strains expressing fluorescent fusion proteins to facilitate visualization of viral assemblies during infection of primary neurons.

 JoVE Bioengineering

Long-term Intravital Immunofluorescence Imaging of Tissue Matrix Components with Epifluorescence and Two-photon Microscopy

1Institute of Bioengineering and Swiss Institute of Experimental Cancer Research (ISREC), École Polytechnique Fédérale de Lausanne, 2Department of Cell and Developmental Biology and Knight Cancer Institute, Oregon Health & Science University

JoVE 51388

The extracellular matrix undergoes substantial remodeling during wound healing, inflammation and tumorigenesis. We present a novel intravital immunofluorescence microscopy approach to visualize the dynamics of fibrillar as well as mesh-like matrix components with high spatial and temporal resolution using epifluorescence or two-photon microscopy.

 JoVE Biology

Imaging Cell Membrane Injury and Subcellular Processes Involved in Repair

1Center for Genetic Medicine Research, Children's National Medical Center, 2Department of Integrative Systems Biology, George Washington University

JoVE 51106

The process of healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of cell membrane injury. This protocol describes assays to monitor these processes.

 JoVE Bioengineering

Simple Microfluidic Devices for in vivo Imaging of C. elegans, Drosophila and Zebrafish

1Neurobiology, NCBS-TIFR, 2Department of Biological Sciences, TIFR

JoVE 3780

A simple microfluidic device has been developed to perform anesthetic free in vivo imaging of C. elegans, intact Drosophila larvae and zebrafish larvae. The device utilizes a deformable PDMS membrane to immobilize these model organisms in order to perform time lapse imaging of numerous processes such as heart beat, cell division and sub-cellular neuronal transport. We demonstrate the use of this device and show examples of different types of data collected from different model systems.

 JoVE Biology

Sample Preparation for Single Virion Atomic Force Microscopy and Super-resolution Fluorescence Imaging

1Department of Physics & Astronomy, University of Utah, 2Center for Cell and Genome, University of Utah

JoVE 51366

The attachment of virions to a surface is a requirement for single virion imaging by Super-resolution fluorescence imaging or atomic force microscopy (AFM). Here we demonstrate a sample preparation method for controlled adhesion of virions to glass surfaces suitable for use in AFM and super-resolution fluorescence imaging.

 JoVE Neuroscience

Intravital Imaging of Axonal Interactions with Microglia and Macrophages in a Mouse Dorsal Column Crush Injury

1Department of Neurosciences, Case Western Reserve University, 2Department of Biomedical Engineering, Case Western Reserve University, 3Department of Pediatrics, Case Western Reserve University

JoVE 52228

Two-photon intravital imaging can be used to investigate interactions among different cell types in the spinal cord in their native tissue environment in a bone marrow chimeric animal with a dorsal column traumatic spinal cord crush injury.

 JoVE Biology

Ex vivo Culture of Drosophila Pupal Testis and Single Male Germ-line Cysts: Dissection, Imaging, and Pharmacological Treatment

1Fachbereich Biologie, Entwicklungsbiologie, Philipps-Universität Marburg, 2Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg

JoVE 51868

This protocol describes the dissection and cultivation of intact testes and germ-line cysts from Drosophila melanogaster pupae. This method allows microscopic observation of spermatogenesis ex vivo. Furthermore, we describe a pharmacological assay of the effect of inhibitors on specific stages of germ-cell development in pupal testes.

 JoVE Medicine

Tissue-simulating Phantoms for Assessing Potential Near-infrared Fluorescence Imaging Applications in Breast Cancer Surgery

1Department of Surgery, University Medical Center Groningen, 2Helmholtz Zentrum Munich, Technical University of Munich

JoVE 51776

Near-infrared fluorescence (NIRF) imaging may improve therapeutic outcome of breast cancer surgery by enabling intraoperative tumor localization and evaluation of surgical margin status. Using tissue-simulating breast phantoms containing fluorescent tumor-simulating inclusions, potential clinical applications of NIRF imaging in breast cancer patients can be assessed for standardization and training purposes.

 JoVE Bioengineering

Hybrid µCT-FMT imaging and image analysis

1Experimental Molecular Imaging, RWTH Aachen University, 2Institute for Biomedical Engineering - Biointerface Laboratory, RWTH Aachen University, 3Utrecht Institute for Pharmaceutical Sciences, Utrecht University

JoVE 52770

We describe a protocol for hybrid imaging, combining fluorescence-mediated tomography (FMT) with micro computed tomography (µCT). After fusion and reconstruction, we perform interactive organ segmentation to extract quantitative measurements of the fluorescence distribution.

 JoVE Immunology and Infection

Non-invasive Optical Imaging of the Lymphatic Vasculature of a Mouse

1Center for Molecular Imaging (CMI), University of Texas Health Science Center-Houston

JoVE 4326

Recently developed imaging techniques using near-infrared fluorescence (NIRF) may help elucidate the role the lymphatic system plays in cancer metastasis, immune response, wound repair, and other lymphatic-associated diseases.

 JoVE Medicine

Acute Brain Trauma in Mice Followed By Longitudinal Two-photon Imaging

1Neuroscience Center, University of Helsinki

JoVE 51559

Acute brain trauma is a severe injury that has no adequate treatment to date. Multiphoton microscopy allows studying longitudinally the process of acute brain trauma development and probing therapeutical strategies in rodents. Two models of acute brain trauma studied with in vivo two-photon imaging of brain are demonstrated in this protocol.

 JoVE Bioengineering

Universal Hand-held Three-dimensional Optoacoustic Imaging Probe for Deep Tissue Human Angiography and Functional Preclinical Studies in Real Time

1Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, 2Faculty of Medicine, Technische Universität München

JoVE 51864

We provide herein a detailed description of the experimental protocol for imaging with a newly developed hand-held optoacoustic (photoacoustic) system for three-dimensional functional and molecular imaging in real time. The demonstrated powerful performance and versatility may define new application areas of the optoacoustic technology in preclinical research and clinical practice.

 JoVE Biology

Live Cell Imaging of Primary Rat Neonatal Cardiomyocytes Following Adenoviral and Lentiviral Transduction Using Confocal Spinning Disk Microscopy

1Max-Planck-Institute for Molecular Biomedicine and Institute of Cell Biology, 2Department of Internal Medicine, Yale Cardiovascular Research Center and Section of Cardiovascular Medicine

JoVE 51666

This protocol describes a method of live cell imaging using primary rat neonatal cardiomyocytes following lentiviral and adenoviral transduction using confocal spinning disk microscopy. This enables detailed observations of cellular processes in living cardiomyocytes.

 JoVE Neuroscience

Multi-photon Intracellular Sodium Imaging Combined with UV-mediated Focal Uncaging of Glutamate in CA1 Pyramidal Neurons

1Institute of Neurobiology, Heinrich Heine University Düsseldorf

JoVE 52038

We describe the combination of focal UV-induced photo-activation of neuro-active compounds with whole-cell patch-clamp and multi-photon imaging of intracellular sodium transients in dendrites and spines of hippocampal neurons in acute tissue slices of the mouse brain.

 JoVE Medicine

A Novel High-resolution In vivo Imaging Technique to Study the Dynamic Response of Intracranial Structures to Tumor Growth and Therapeutics

1Brain Tumor Research Centre, Hospital for Sick Children, Toronto Medical Discovery Tower, 2Ontario Cancer Institute, Princess Margaret Hospital, 3Neurosurgery, Toronto Western Hospital

JoVE 50363

We describe a novel in vivo imaging technique that couples fluorescent chimeric mice with intracranial windows and high-resolution 2-photon microscopy. This imaging platform aids studies of dynamic changes in brain tissue and microvasculature, at a single-cell level, following pathological insults and is adaptable to assess intracranial drug delivery and distribution.

 JoVE Neuroscience

Agarose Microchambers for Long-term Calcium Imaging of Caenorhabditis elegans

1Max Planck Institute for Biophysical Chemistry

JoVE 52742

Imaging behavior and neural activity over long time scales without immobilization of the animal is a prerequisite to understand behavior. Agarose microfluidic chambers imaging (AMI) can be used to image neural activity and behavior for all life stages of Caenorhabditis elegans.

 JoVE Biology

Fluorescence Imaging with One-nanometer Accuracy (FIONA)

1Department of Physics, University of Illinois at Urbana-Champaign, 2Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, 3Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign

JoVE 51774

Single fluorophores can be localized with nanometer precision using FIONA. Here a summary of the FIONA technique is reported, and how to carry out FIONA experiments is described.

 JoVE Bioengineering

From Fast Fluorescence Imaging to Molecular Diffusion Law on Live Cell Membranes in a Commercial Microscope

1NEST Laboratory, Scuola Normale Superiore, 2Center for Nanotechnology Innovation, Instituto Italiano di Tecnologia, 3Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine

JoVE 51994

Spatial distribution and temporal dynamics of plasma membrane proteins and lipids is a hot topic in biology. Here this issue is addressed by a spatio-temporal image fluctuation analysis that provides conceptually the same physical quantities of single particle tracking, but it uses small molecular labels and standard microscopy setups.

 JoVE Neuroscience

Imaging Cleared Intact Biological Systems at a Cellular Level by 3DISCO

1Neuroscience, Genentech, Inc., 2Department of Discovery Oncology, Genentech, Inc., 3Department of Pathology, Genentech, Inc.

JoVE 51382

To obtain high-resolution images of fluorescently labeled cells within large tissues, ideally, the biological samples should be imaged without sectioning. 3DISCO is a straightforward tissue clearing procedure based on sequential incubation with organic solvents. Upon clearing, the organs become transparent allowing an end-to-end laser scan of the specimen.

 JoVE Biology

Mouse Fetal Whole Intestine Culture System for Ex Vivo Manipulation of Signaling Pathways and Three-dimensional Live Imaging of Villus Development

1Cell and Developmental Biology, University of Michigan, 2Department of Biosciences and Nutrition, Karolinska Instituet Novum

JoVE 51817

Improved imaging technology is allowing three-dimensional imaging of organs during development. Here we describe a whole organ culture system that allows live imaging of the developing villi in the fetal mouse intestine.

 JoVE Medicine

Murine Model for Non-invasive Imaging to Detect and Monitor Ovarian Cancer Recurrence

1Department of Obstetrics, Gynecology and Reproductive Sciences, Reproductive Immunology Unit, Yale University School of Medicine, 2NatureMost Laboratories, 3Bruker Preclinical Imaging

JoVE 51815

We describe a non-invasive animal imaging platform that allows the detection, quantification, and monitoring of ovarian cancer growth and recurrence. This intra-peritoneal xenograft model mimics the clinical profile of patients with ovarian cancer.

 JoVE Neuroscience

TIRFM and pH-sensitive GFP-probes to Evaluate Neurotransmitter Vesicle Dynamics in SH-SY5Y Neuroblastoma Cells: Cell Imaging and Data Analysis

1Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 2San Raffaele Scientific Institute and Vita-Salute University, 3CEND Center of Excellence in Neurodegenerative Diseases, Università degli Studi di Milano

JoVE 52267

This paper provides a method for investigating neurotransmitter vesicle dynamics in neuroblastoma cells, using a synaptobrevin2-pHluorin construct and Total Internal Reflection Fluorescence Microscopy. The strategy developed for image processing and data analysis is also reported.

 JoVE Bioengineering

Imaging of Biological Tissues by Desorption Electrospray Ionization Mass Spectrometry

1School of Chemistry and Biochemistry, Georgia Institute of Technology

JoVE 50575

Desorption electrospray ionization mass spectrometry (DESI-MS) is an ambient method by which samples, including biological tissues, can be imaged with minimal sample preparation. By rastering the sample below the ionization probe, this spray-based technique provides sufficient spatial resolution to discern molecular features of interest within tissue sections.

More Results...
simple hit counter