Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Lasers, Gas: Lasers in which a gas lasing medium is stimulated to emit light by an electric current or high-frequency oscillator.
 JoVE Immunology and Infection

In Situ Detection of Autoreactive CD4 T Cells in Brain and Heart Using Major Histocompatibility Complex Class II Dextramers

1School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, 2Center for Biotechnology, University of Nebraska, Lincoln, 3Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln


JoVE 51679

 JoVE Developmental Biology

Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients

1Department of Biomedical Science, The Bateson Centre, University of Sheffield, 2Institute of Genetic Medicine, Newcastle University, 3Department of Cardiovascular Science, The Bateson Centre, University of Sheffield, 4School of Biochemistry, University of Bristol, 5Biology Department, University of York


JoVE 53162

 JoVE Medicine

High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

1Department of Bioengineering, University of Illinois at Chicago, 2Department of Pathology, University of Illinois at Chicago, 3Department of Biological Sciences, University of Illinois at Chicago, 4Department of Chemistry, University of Illinois at Chicago, 5Department of Nephrology, University of Illinois at Chicago


JoVE 52332

 JoVE Bioengineering

One Minute, Sub-One-Watt Photothermal Tumor Ablation Using Porphysomes, Intrinsic Multifunctional Nanovesicles

1Department of Pharmaceutical Sciences, University of Toronto, 2The Institute of Biomaterials and Biomedical Engineering, University of Toronto, 3Ontario Cancer Institute, Campbell Family Institute For Cancer Research and Techna Institute, 4Department of Biomedical Engineering, University at Buffalo, The State University of New York


JoVE 50536

 JoVE In-Press

Open Tracheostomy Gastric Acid Aspiration Murine Model of Acute Lung Injury Results in Maximal Acute Nonlethal Lung Injury

1Department of Anesthesiology, University at Buffalo, State University of New York, 2Department of Anesthsiology, Veterans Admistration Western New York Healthcare System, 3Institute of Lasers, Photonics and Biophotonics, University at Buffalo, State University of New York

Video Coming Soon

JoVE 54700

 Science Education: Essentials of Analytical Chemistry

Raman Spectroscopy for Chemical Analysis

JoVE Science Education

Source: Laboratory of Dr. Ryoichi Ishihara — Delft University of Technology

Raman spectroscopy is a technique for analyzing vibrational and other low frequency modes in a system. In chemistry it is used to identify molecules by their Raman fingerprint. In solid-state physics it is used to characterize materials, and more specifically to investigate their crystal structure or crystallinity. Compared to other techniques for investigating the crystal structure (e.g. transmission electron microscope and x-ray diffraction) Raman micro-spectroscopy is non-destructive, generally requires no sample preparation, and can be performed on small sample volumes. For performing Raman spectroscopy a monochromatic laser is shone on a sample. If required the sample can be coated by a transparent layer which is not Raman active (e.g., SiO2) or placed in DI water. The electromagnetic radiation (typically in the near infrared, visible, or near ultraviolet range) emitted from the sample is collected, the laser wavelength is filtered out (e.g., by a notch or bandpass filter), and the resulting light is sent through a monochromator (e.g., a grating) to a CCD detector. Using this, the inelastic scattered light, originating from Raman scattering, can be captured and used to construct the Raman spectrum o

12345678929
More Results...
Waiting
simple hit counter