You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology


Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
 JoVE Engineering

Casting Protocols for the Production of Open Cell Aluminum Foams by the Replication Technique and the Effect on Porosity

1Department of Materials Science and Engineering, The University of Sheffield, 2Department of Mechanical Engineering, The University of Sheffield

JoVE 52268

Replication is one of the processing techniques used for the production of porous metal sponges. In this paper one implementation of the method for the production of open celled porous aluminum is shown in detail.

 JoVE Chemistry

In Situ SIMS and IR Spectroscopy of Well-defined Surfaces Prepared by Soft Landing of Mass-selected Ions

1Physical Sciences Division, Pacific Northwest National Laboratory

JoVE 51344

Soft landing of mass-selected ions onto surfaces is a powerful approach for the highly-controlled preparation of novel materials. Coupled with analysis by in situ secondary ion mass spectrometry (SIMS) and infrared reflection absorption spectroscopy (IRRAS), soft landing provides unprecedented insights into the interactions of well-defined species with surfaces.

 JoVE Engineering

Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

1MESA+ Institute for Nanotechnology, University of Twente

JoVE 51547

Procedures are outlined to prepare segmented and coaxial nanowires via templated electrodeposition in nanopores. As examples, segmented nanowires consisting of Ag and ZnO segments, and coaxial nanowires consisting of a TiO2 shell and a Ag core were made. The nanowires were used in photocatalytic hydrogen formation experiments.

 JoVE Bioengineering

Environmentally-controlled Microtensile Testing of Mechanically-adaptive Polymer Nanocomposites for ex vivo Characterization

1Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, 2Department of Biomedical Engineering, Case Western Reserve University, 3Department of Electrical Engineering and Computer Science, Case Western Reserve University

JoVE 50078

A method is discussed by which the in vivo mechanical behavior of stimuli-responsive materials is monitored as a function of time. Samples are tested ex vivo using a microtensile tester with environmental controls to simulate the physiological environment. This work further promotes understanding the in vivo behavior of our material.

 JoVE Engineering

Novel 3D/VR Interactive Environment for MD Simulations, Visualization and Analysis

1Materials Science and Engineering, School of Engineering, University of California Merced

JoVE 51384

A new computational system featuring GPU-accelerated molecular dynamics simulation and 3D/VR visualization, analysis and manipulation of nanostructures has been implemented, representing a novel approach to advance materials research and promote innovative investigation and alternative methods to learn about material structures with dimensions invisible to the human eye.

 JoVE Engineering

Preparation and Reactivity of Gasless Nanostructured Energetic Materials

1Department of Physics, University of Notre Dame, 2Department of Chemical and Biomolecular Engineering, University of Notre Dame, 3Center of Functional Nano-Ceramics, National University of Science and Technology, "MISIS"

JoVE 52624

This protocol describes the preparation of gasless nanostructured energetic materials (Ni+Al, Ta+C, Ti+C) using the short-term high-energy ball milling (HEBM) technique. It also describes a high-speed thermal imaging method to study the reactivity of mechanically fabricated nanocomposites. These protocols can be extended to other reactive nanostructured energetic materials.

 JoVE Engineering

Characterization of Surface Modifications by White Light Interferometry: Applications in Ion Sputtering, Laser Ablation, and Tribology Experiments

1Materials Science Division, Argonne National Laboratory, 2Energy Systems Division, Argonne National Laboratory, 3MassThink LLC

JoVE 50260

White light microscope interferometry is an optical, noncontact and quick method for measuring the topography of surfaces. It is shown how the method can be applied toward mechanical wear analysis, where wear scars on tribological test samples are analyzed; and in materials science to determine ion beam sputtering or laser ablation volumes and depths.

 JoVE Chemistry

Supercritical Nitrogen Processing for the Purification of Reactive Porous Materials

1Hydrogen and Energy Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology

JoVE 52817

Nitrogen is an effective supercritical fluid for extraction or drying processes due to its small molecular size, high density in the near-liquid supercritical regime, and chemical inertness. We present a supercritical nitrogen drying protocol for the purification treatment of reactive, porous materials.

 JoVE Engineering

Simulation of the Planetary Interior Differentiation Processes in the Laboratory

1Geophysical Laboratory, Carnegie Institution of Washington

JoVE 50778

The high-pressure and high-temperature experiments described here mimic planet interior differentiation processes. The processes are visualized and better understood by high-resolution 3D imaging and quantitative chemical analysis.

 JoVE Engineering

Making Record-efficiency SnS Solar Cells by Thermal Evaporation and Atomic Layer Deposition

1Department of Mechanical Engineering, Massachusetts Institute of Technology, 2Laboratory for Manufacturing and Productivity, Massachusetts Institute of Technology, 3School of Engineering and Applied Sciences, Harvard University, 4Department of Materials Science and Engineering, Massachusetts Institute of Technology, 5Department of Chemistry & Chemical Biology, Harvard University

JoVE 52705

Tin sulfide (SnS) is a candidate material for Earth-abundant, non-toxic solar cells. Here, we demonstrate the fabrication procedure of the SnS solar cells employing atomic layer deposition, which yields 4.36% certified power conversion efficiency, and thermal evaporation which yields 3.88%.

 JoVE Bioengineering

Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

1Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, 2Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, 3Keck School of Medicine, University of Southern California

JoVE 51745

We have devised a method for low-cost and rapid prototyping of liquid elastomer rubber injection molded devices by using fused deposition modeling 3D printers for mold design and a modified desiccator as a liquid injection system.

 JoVE Bioengineering

Generation of Scalable, Metallic High-Aspect Ratio Nanocomposites in a Biological Liquid Medium

1Biophysics Department, Centenary College of Louisiana, 2Department of Chemistry, Louisiana Tech University, 3Department of Integrative Physiology, University of North Texas Health Sciences Center, 4Biomedical Engineering, Louisiana Tech University, 5Institute for Micromanufacturing, Louisiana Tech University

JoVE 52901

Here we present a protocol to synthesize novel, high-aspect ratio biocomposites under biological conditions and in liquid media. The biocomposites scale from nanometers to micrometers in diameter and length, respectively. Copper nanoparticles (CNPs) and copper sulfate combined with cystine are the key components for the synthesis.

 JoVE Engineering

Scalable Nanohelices for Predictive Studies and Enhanced 3D Visualization

1Materials Science and Engineering, School of Engineering, University of California Merced, 2Computer Science and Engineering, School of Engineering, University of California Merced

JoVE 51372

Accurate modeling of nanohelical structures is important for predictive simulation studies leading to novel nanotechnology applications.  Currently, software packages and codes are limited in creating atomistic helical models.  We present two procedures designed to create atomistic nanohelical models for simulations, and a graphical interface to enhance research through visualization.

 JoVE Bioengineering

Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

1Polymer and Composite Engineering (PaCE) Group, Institute of Materials Chemistry and Research, University of Vienna, 2Department of Chemical Engineering, University College London, 3Polymer and Composite Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London

JoVE 51432

We present a novel method of manufacturing rigid and robust short natural fiber preforms using a papermaking process. Bacterial cellulose acts simultaneously as the binder for the loose fibers and provides rigidity to the fiber preforms. These preforms can be infused with a resin to produce truly green hierarchical composites.

 JoVE Engineering

Concurrent Quantitative Conductivity and Mechanical Properties Measurements of Organic Photovoltaic Materials using AFM

1Center for Nanoscale Materials, Argonne National Laboratory, 2Institute for Molecular Engineering, University of Chicago

JoVE 50293

Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution.

 JoVE Bioengineering

Development of Amelogenin-chitosan Hydrogel for In Vitro Enamel Regrowth with a Dense Interface

1Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California

JoVE 51606

In this article, we describe a protocol for fabricating an amelogenin-chitosan hydrogel for superficial enamel reconstruction. Organized in situ growth of apatite crystals in the hydrogel formed a dense enamel-restoration interface, which will improve the effectiveness and durability of restorations.

 JoVE Chemistry

Template Directed Synthesis of Plasmonic Gold Nanotubes with Tunable IR Absorbance

1Department of Chemistry, University of Toronto

JoVE 50420

Solution-suspendable gold nanotubes with controlled dimensions can be synthesized by electrochemical deposition in porous anodic aluminum oxide (AAO) membranes using a hydrophobic polymer core. Gold nanotubes and nanotube arrays hold promise for applications in plasmonic biosensing, surface-enhanced Raman spectroscopy, photo-thermal heating, ionic and molecular transport, microfluidics, catalysis and electrochemical sensing.

 JoVE Engineering

Electron Channeling Contrast Imaging for Rapid III-V Heteroepitaxial Characterization

1Department of Materials Science and Engineering, The Ohio State University, 2Department of Electrical and Computer Engineering, The Ohio State University, 3Institute of Materials Research, The Ohio State University

JoVE 52745

The use of electron channeling contrast imaging in a scanning electron microscope to characterize defects in III-V/Si heteroexpitaxial thin films is described. This method yields similar results to plan-view transmission electron microscopy, but in significantly less time due to lack of required sample preparation.

 JoVE Bioengineering

Graphene Coatings for Biomedical Implants

1Department of Physics, Clemson University, 2Department of Pharmacology and Toxicology, East Carolina University, 3Department of Bioengineering, Clemson University, 4Center for Optical Materials Science and Engineering Technologies, Clemson University

JoVE 50276

Graphene offers potential as a coating material for biomedical implants. In this study we demonstrate a method for coating nitinol alloys with nanometer thick layers of graphene and determine how graphene may influence implant response.

 JoVE Engineering

Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells

1Center for Innovative Fuel Cells and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, 2School of Chemistry and Biochemistry, Georgia Institute of Technology

JoVE 50161

We present a unique platform for characterizing electrode surfaces in solid oxide fuel cells (SOFCs) that allows simultaneous performance of multiple characterization techniques (e.g. in situ Raman spectroscopy and scanning probe microscopy alongside electrochemical measurements). Complementary information from these analyses may help to advance toward a more profound understanding of electrode reaction and degradation mechanisms, providing insights into rational design of better materials for SOFCs.

 JoVE Engineering

Revealing Dynamic Processes of Materials in Liquids Using Liquid Cell Transmission Electron Microscopy

1Materials Sciences Division, Lawrence Berkeley National Laboratory

JoVE 50122

We have developed a self-contained liquid cell, which allows imaging through liquids using a transmission electron microscope. Dynamic processes of nanoparticles in liquids can be revealed in real time with sub-nanometer resolution.

 JoVE Engineering

Fabrication of Nano-engineered Transparent Conducting Oxides by Pulsed Laser Deposition

1Department of Energy and NEMAS - Center for NanoEngineered Materials and Surfaces, Politecnico di Milano, 2Center for Nano Science and Technology, Instituto Italiano di Tecnologia

JoVE 50297

We describe the experimental method to deposit nanostructured oxide thin films by nanosecond Pulsed Laser Deposition (PLD) in the presence of a background gas. By using this method Al-doped ZnO (AZO) films, from compact to hierarchically structured as nano-tree forests, can be deposited.

 JoVE Engineering

Construction and Testing of Coin Cells of Lithium Ion Batteries

1School of Materials Science and Engineering, Clemson University, 2Center for Optical Materials Science and Engineering Technologies, Clemson University

JoVE 4104

A protocol to construct and test coin cells of lithium ion batteries is described. The specific procedures of making a working electrode, preparing a counter electrode, assembling a cell inside a glovebox and testing the cell are presented.

 JoVE Bioengineering

Measuring the Mechanical Properties of Living Cells Using Atomic Force Microscopy

1Department of Physics, Worcester Polytechnic Institute, 2Department of Chemical Engineering, Worcester Polytechnic Institute

JoVE 50497

This paper demonstrates a protocol to characterize the mechanical properties of living cells by means of microindentation using an Atomic Force Microscope (AFM).

 JoVE Engineering

Simulation, Fabrication and Characterization of THz Metamaterial Absorbers

1School of Engineering, University of Glasgow

JoVE 50114

This protocol outlines the simulation, fabrication and characterization of THz metamaterial absorbers. Such absorbers, when coupled with an appropriate sensor, have applications in THz imaging and spectroscopy.

 JoVE Bioengineering

Multi-Scale Modification of Metallic Implants With Pore Gradients, Polyelectrolytes and Their Indirect Monitoring In vivo

1Biomatériaux et Bioingénieriee, INSERM, 2Service Oto-Rhino-Laryngologie, Hôpitaux Universitaires de Strasbourg, 3Faculté de Chirurgie Dentaire, Université de Strasbourg

JoVE 50533

In this video, we will demonstrate modification techniques for porous metallic implants to improve their functionality and to control cell migration. Techniques include development of pore gradients to control cell movement in 3D and production of basement membrane mimics to control cell movement in 2-D. Also, a HPLC-based method for monitoring implant integration in-vivo via analysis of blood proteins is described.

 JoVE Biology

3D Printing of Preclinical X-ray Computed Tomographic Data Sets

1Department of Chemistry and Biochemistry, University of Notre Dame, 2Freimann Life Science Center, University of Notre Dame, 3Department of Biological Sciences, University of Notre Dame, 4Notre Dame Integrated Imaging Facility, University of Notre Dame, 5MakerBot Industries LLC, 6Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, 7Harper Cancer Research Institute, University of Notre Dame

JoVE 50250

Using modern plastic extrusion and printing technologies, it is now possible to quickly and inexpensively produce physical models of X-ray CT data taken in a laboratory. The three -dimensional printing of tomographic data is a powerful visualization, research, and educational tool that may now be accessed by the preclinical imaging community.

 JoVE Bioengineering

Lignin Down-regulation of Zea mays via dsRNAi and Klason Lignin Analysis

1The School of Plant Sciences, University of Arizona, 2Department of Chemical Engineering and Materials Science, DOE Great Lakes Bioenergy Research Center, Michigan State University, 3The Institute for Sustainable and Renewable Resources, The Institute for Advanced Learning and Research, 4Department of Plant, Soil and Microbial Sciences, Michigan State University

JoVE 51340

A double stranded RNA interference (dsRNAi) technique is employed to down-regulate the maize cinnamoyl coenzyme A reductase (ZmCCR1) gene to lower plant lignin content. Lignin down-regulation from the cell wall is visualized by microscopic analyses and quantified by the Klason method. Compositional changes in hemicellulose and crystalline cellulose are analyzed.

 JoVE Chemistry

Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

1Oak Ridge Institute for Science and Education, 2Air Force Research Laboratory, Airbase Technology Division, 3School of Materials Science and Engineering, Clemson University

JoVE 51022

Silica nanoparticles were prepared using acid-catalysis of a siloxane precursor and microwave-assisted synthetic techniques resulting in the controlled growth of nanomaterials ranging from 30-250 nm in diameter. The growth dynamics can be controlled by varying the initial silicic acid concentration, time of the reaction, and temperature of reaction.

 JoVE Immunology and Infection

Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

1Department of Health Science & Technology, Cartilage Engineering & Regeneration, 2Biomaterials Department, Innovent e.V.

JoVE 50632

A bioprinter was used to create patterned hydrogels based on a sacrificial mold. The poloxamer mold was backfilled with a second hydrogel and then eluted, leaving voids which were filled with a third hydrogel. This method uses fast elution and good printability of poloxamer to generate complex architectures from biopolymers.

 JoVE Chemistry

Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules

1Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, 2Materials Science, Zernike Institute for Advanced Materials, University of Groningen, 3ICTM - Center for Catalysis and Chemical Engineering

JoVE 50673

This article describes the preparation of well-ordered nickel nanofoams via electroless metal deposition onto nanoporous templates obtained from self-assembled diblock copolymer based supramolecules.

 JoVE Bioengineering

ECM Protein Nanofibers and Nanostructures Engineered Using Surface-initiated Assembly

1Department of Biomedical Engineering, Carnegie Mellon University, 2Department of Materials Science and Engineering, Carnegie Mellon University

JoVE 51176

A method to obtain nanofibers and complex nanostructures from single or multiple extracellular matrix proteins is described. This method uses protein-surface interactions to create free-standing protein-based materials with tunable composition and architecture for use in a variety of tissue engineering and biotechnology applications.

 JoVE Bioengineering

Design and Construction of Artificial Extracellular Matrix (aECM) Proteins from Escherichia coli for Skin Tissue Engineering

1School of Materials Science and Engineering, Nanyang Technological University

JoVE 52845

Recombinant technologies have enabled material designers to create novel artificial proteins with customized functionalities for tissue engineering applications. For example, artificial extracellular matrix proteins can be designed to incorporate structural and biological domains derived from native ECMs. Here, we describe the construction and purification of aECM proteins containing elastin-like repeats.

 JoVE Environment

Removal of Trace Elements by Cupric Oxide Nanoparticles from Uranium In Situ Recovery Bleed Water and Its Effect on Cell Viability

1Division of Physical Therapy, Department of Orthopedics & Rehabilitation, University of New Mexico, 2Department of Ecosystem Science and Management, University of Wyoming, 3School of Pharmacy, University of Wyoming, 4Department of Environmental and Radiological Health Sciences, Colorado State University, 5Center for Environmental Medicine, Colorado State University, 6College of Pharmacy, California Northstate University

JoVE 52715

Production bleed water (PBW) was treated with cupric oxide nanoparticles (CuO-NPs) and cellular toxicity was assessed in cultured human cells. The goal of this protocol was to integrate the native environmental sample into a cell culture format assessing the changes in toxicity due to CuO-NP treatment.

 JoVE Chemistry

Quantitative and Qualitative Examination of Particle-particle Interactions Using Colloidal Probe Nanoscopy

1Faculty of Pharmacy, University of Sydney, 2Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University

JoVE 51874

Colloidal probe nanoscopy can be used within a variety of fields to gain insight into the physical stability and coagulation kinetics of colloidal systems and aid in drug discovery and formulation sciences using biological systems. The method described within provides a quantitative and qualitative means to study such systems.

 JoVE Biology

Fundamental Technical Elements of Freeze-fracture/Freeze-etch in Biological Electron Microscopy

1Department of Pediatrics, Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill

JoVE 51694

Basic techniques and refinements of freeze-fracture processing of biological specimens and nanomaterials for examination by transmission electron microscopy are described. This technique is a preferred method for revealing ultrastructural features and specializations of biological membranes and for obtaining ultrastructural level dimensional and spatial data in materials sciences and nanotechnology products.

 JoVE Chemistry

Origami Inspired Self-assembly of Patterned and Reconfigurable Particles

1Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 2Department of Chemistry, The Johns Hopkins University

JoVE 50022

We describe experimental details of the synthesis of patterned and reconfigurable particles from two dimensional (2D) precursors. This methodology can be used to create particles in a variety of shapes including polyhedra and grasping devices at length scales ranging from the micro to centimeter scale.

 JoVE Chemistry

Chemical Vapor Deposition of an Organic Magnet, Vanadium Tetracyanoethylene

1Department of Physics, The Ohio State University, 2Department of Chemistry, The Ohio State University

JoVE 52891

We present the synthesis of the organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]x, x~2) via low temperature chemical vapor deposition (CVD). This optimized recipe yields an increase in Curie temperature from 400 K to over 600 K and a dramatic improvement in magnetic resonance properties.

 JoVE Engineering

Fabrication of Gate-tunable Graphene Devices for Scanning Tunneling Microscopy Studies with Coulomb Impurities

1Department of Physics, University of California at Berkeley, 2Department of Chemistry, University of California at Berkeley, 3Department of Chemical and Biomolecular Engineering, University of California at Berkeley, 4National Institute for Materials Science (Japan), 5Materials Sciences Division, Lawrence Berkeley National Laboratory, 6Kavli Energy NanoSciences Institute, University of California at Berkeley and Lawrence Berkeley National Laboratory

JoVE 52711

This paper details the fabrication process of a gate-tunable graphene device, decorated with Coulomb impurities for scanning tunneling microscopy studies. Mapping the spatially dependent electronic structure of graphene in the presence of charged impurities unveils the unique behavior of its relativistic charge carriers in response to a local Coulomb potential.

 JoVE Engineering

Fabrication of VB2/Air Cells for Electrochemical Testing

1Department of Chemistry, The George Washington University, 2Lynntech

JoVE 50593

A protocol is presented to study multi-electron metal/air battery systems by using previous technology developed for the zinc/air cell. Electrochemical testing is then performed on fabricated batteries to evaluate performance.

 JoVE Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory

JoVE 50731

A protocol for the seeded synthesis of rod-shaped and tetrapod-shaped multicomponent nanostructures consisting of CdS and CdSe is presented.

 JoVE Engineering

Dry Oxidation and Vacuum Annealing Treatments for Tuning the Wetting Properties of Carbon Nanotube Arrays

1Graduate Aeronautical Laboratories, California Institute of Technology

JoVE 50378

This article describes a simple method to fabricate vertically aligned carbon nanotube arrays by CVD and to subsequently tune their wetting properties by exposing them to vacuum annealing or dry oxidation treatment.

 JoVE Engineering

Nanomoulding of Functional Materials, a Versatile Complementary Pattern Replication Method to Nanoimprinting

1Institute of Microengineering (IMT), Photovoltaics and Thin Film Electronics Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), 2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

JoVE 50177

We describe a nanomoulding technique which allows low-cost nanoscale patterning of functional materials, materials stacks and full devices. Nanomoulding can be performed on any nanoimprinting setup and can be applied to a wide range of materials and deposition processes.

 JoVE Chemistry

Diffuse Reflectance Infrared Spectroscopic Identification of Dispersant/Particle Bonding Mechanisms in Functional Inks

1Department of Chemistry, New York City College of Technology, City University of New York (CUNY)

JoVE 52744

Formulation of stable, functional inks is critical to expanding the applications of additive manufacturing. In turn, knowledge of the mechanisms of dispersant/particle bonding is required for effective ink formulation. Diffuse Reflectance Fourier Transform Infrared Spectroscopy (DRIFTS) is presented as a simple, inexpensive way to gain insight into these mechanisms.

 JoVE Engineering

Fabrication of Silica Ultra High Quality Factor Microresonators

1Department of Chemical Engineering and Materials Science, University of Southern California, 2Department of Electrical Engineering-Electrophysics, University of Southern California

JoVE 4164

We describe the use of a carbon dioxide laser reflow technique to fabricate silica resonant cavities, including free-standing microspheres and on-chip microtoroids. The reflow method removes surface imperfections, allowing long photon lifetimes within both devices. The resulting devices have ultra high quality factors, enabling applications ranging from telecommunications to biodetection.

 JoVE Chemistry

Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties

1Department of Materials Science and Engineering, Clemson University, 2Department of Physics and Astronomy, Clemson University, 3Electron Microscope Facility, Clemson University, 4Materials Science and Engineering, King Abdullah University of Science and Technology

JoVE 52869

A protocol for the synthesis and processing of polycrystalline SrTiO3 ceramics doped non-uniformly with Pr is presented along with the investigation of their thermoelectric properties.

 JoVE Biology

Use of a Robot for High-throughput Crystallization of Membrane Proteins in Lipidic Mesophases

1Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin

JoVE 4000

Herein is described a robotic approach to high-throughput crystallization of membrane proteins in lipidic mesophases for use in structure determination using macromolecular X-ray crystallography. Three robots capable of handling the viscous and sticky protein-laden mesophase integral to the method are introduced.

 JoVE Chemistry

Fabricating Nanogaps by Nanoskiving

1Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen

JoVE 50406

The fabrication of electrically addressable, high-aspect-ratio (> 1000:1) metal nanowires separated by gaps of single nanometers using either sacrificial layers of aluminum and silver or self-assembled monolayers as templates is described. These nanogap structures are fabricated without a clean room or any photo- or electron-beam lithographic processes by a form of edge lithography known as nanoskiving.

 JoVE Biology

Harvesting and Cryo-cooling Crystals of Membrane Proteins Grown in Lipidic Mesophases for Structure Determination by Macromolecular Crystallography

1Membrane Structural and Functional Biology Group, Schools of Medicine and Biochemistry & Immunology, Trinity College Dublin

JoVE 4001

Herein is described procedures implemented in the Caffrey Membrane Structural and Functional Biology Group to harvest and cryo-cool membrane protein crystals grown in lipidic cubic and sponge phases for use in structure determination using macromolecular X-ray crystallography.

 JoVE Engineering

Sputter Growth and Characterization of Metamagnetic B2-ordered FeRh Epilayers

1School of Physics and Astronomy, University of Leeds, 2Institute of Materials Research, University of Leeds, 3School of Chemistry, University of Edinburgh, 4Department of Chemical Engineering, Northeastern University, 5Department of Physics, Northeastern University

JoVE 50603

A method to prepare epitaxial layers of ordered alloys by sputtering is described. The B2-ordered FeRh compound is used as an example, as it displays a metamagnetic transition that depends sensitively on the degree of chemical order and the exact composition of the alloy.

More Results...
simple hit counter