Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Mice, Knockout: Strains of mice in which certain Genes of their Genomes have been disrupted, or "knocked-out". To produce knockouts, using Recombinant dna technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse Embryos to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as Experimental animal models for diseases (Disease models, Animal) and to clarify the functions of the genes.
 JoVE Behavior

Contextual and Cued Fear Conditioning Test Using a Video Analyzing System in Mice

1Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 2Japan Science and Technology Agency, Core Research for Evolutionary Science and Technology (CREST), 3Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National Institutes of Natural Sciences


JoVE 50871

 JoVE Immunology and Infection

Determining Immune System Suppression versus CNS Protection for Pharmacological Interventions in Autoimmune Demyelination

1Physical Medicine and Rehabilitation, University of Alabama at Birmingham, 2Department of Pathology, University of Alabama at Birmingham, 3Department of Neurobiology, University of Alabama at Birmingham, 4Center for Glial Biology and Medicine, University of Alabama at Birmingham


JoVE 54348

 JoVE Behavior

Morris Water Maze Test: Optimization for Mouse Strain and Testing Environment

1Department of Psychology, Behavioral Neuroscience, West Virginia University, 2Department of Physiology and Pharmacology, West Virginia University, 3Department of Neurology, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 4Department of Neuroscience, N. Bud Grossman Center for Memory Research and Care, University of Minnesota, 5GRECC, VA Medical Center, 6Center for Neuroscience, Center for Basic and Translational Stroke Research, West Virginia University


JoVE 52706

 JoVE Developmental Biology

Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation

1Center of Physiology and Pathophysiology, Institute of Neurophysiology, University of Cologne, 2Department of Biology, University of Konstanz, 3Department of Statistics, Technical University of Dortmund, 4Leibniz Research Centre for Working Environment and Human Factors, Technical University of Dortmund


JoVE 52333

 JoVE Behavior

Recording Mouse Ultrasonic Vocalizations to Evaluate Social Communication

1Human Genetics and Cognitive Functions, University Paris Diderot, CNRS UMR 3571, Institut Pasteur, 2Neurophysiology and Behavior, University Pierre et Marie Curie Paris 6, CNRS UMR 7102, 3Bio Image Analysis, CNRS URA 2582, Institut Pasteur


JoVE 53871

 JoVE Neuroscience

HSV-Mediated Transgene Expression of Chimeric Constructs to Study Behavioral Function of GPCR Heteromers in Mice

1Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 2Department of Neurology, Icahn School of Medicine at Mount Sinai, 3Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 4Department of Physiology and Biophysics, Virginia Commonwealth University Medical School


JoVE 53717

 Science Education: Essentials of Lab Animal Research

Fundamentals of Breeding and Weaning

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Millions of mice and rats are bred for use in biomedical research each year. Worldwide, there are several large commercial breeding facilities that supply mice to research laboratories, but many facilities choose to also breed mice and rats in-house to reduce costs and increase research options. When breeding in the animal facility, researchers are able to manipulate the genetics of the animals, time the pregnancies to meet the needs of the research, and work with embryos and neonates as required. Mice and rats can be bred in a variety of schemes and methods. Technical procedures, such as the use of vaginal cytology, visualization of the vaginal area, and observation of copulatory plugs, have been developed to assist with the synchronization of breeding to correspond to research requirements. This manuscript is an overview of the basic fundamentals of mouse and rat breeding and technical procedures used. More detailed descriptions of the complex breeding schemes, and the full description of the methods for vaginal cytology, are available in the list of references.

 JoVE Biochemistry

Method for Identifying Small Molecule Inhibitors of the Protein-protein Interaction Between HCN1 and TRIP8b

1Davee Department of Neurology and Clinical Neurosciences, Feinberg School of Medicine, Northwestern University, 2Center for Molecular Innovation and Drug Discovery, Northwestern University, 3Department of Pharmacology, Feinberg School of Medicine, Northwestern University, 4High Throughput Analysis Laboratory, Department of Molecular Biosciences, Northwestern University, 5Department of Physiology, Feinberg School of Medicine, Northwestern University


JoVE 54540

 JoVE Medicine

Implantation of a Carotid Cuff for Triggering Shear-stress Induced Atherosclerosis in Mice

1European Institute for Molecular Imaging, Westfälische Wilhelms-University Münster, 2British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, 3Department of Bioengineering, Imperial College London, 4Biomedical Engineering, Eindhoven University of Technology


JoVE 3308

12345678943
More Results...
Waiting
simple hit counter