You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Medicine

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Engineering

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

You do not have subscription access to articles in this section. Learn more about access.

  JoVE Developmental Biology


Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
 JoVE Bioengineering

Fabricating Complex Culture Substrates Using Robotic Microcontact Printing (R-µCP) and Sequential Nucleophilic Substitution

1Department of Biomedical Engineering, University of Wisconsin, Madison, 2Department of Mechanical Engineering, University of Wisconsin, Madison

JoVE 52186

Cell culture substrates functionalized with microscale patterns of biological ligands have immense utility in the field of tissue engineering. Here, we demonstrate the versatile and automated manufacture of tissue culture substrates with multiple, micropatterned poly(ethylene glycol) brushes presenting orthogonal chemistries that enable spatially precise and site-specific immobilization of biological ligands.

 JoVE Bioengineering

Generation of Aligned Functional Myocardial Tissue Through Microcontact Printing

1Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 2Harvard Stem Cell Institute

JoVE 50288

The generation of aligned myocardial tissue is a key requirement for adapting the recent advances in stem cell biology to clinically useful purposes. Herein we describe a microcontact printing approach for the precise control of cell shape and function. Using highly purified populations of embryonic stem cell derived cardiac progenitors, we then generate anisotropic functional myocardial tissue.

 JoVE Bioengineering

Creating Adhesive and Soluble Gradients for Imaging Cell Migration with Fluorescence Microscopy

1Centre for Vascular Research and Australian Centre for Nanomedicine, The University of New South Wales, 2School of Chemistry and Australian Centre for Nanomedicine, The University of New South Wales

JoVE 50310

A method for the assembly of adhesive and soluble gradients in a microscopy chamber for live cell migration studies is described. The engineered environment combines antifouling surfaces and adhesive tracks with solution gradients and therefore allows one to determine the relative importance of guidance cues.

 JoVE Bioengineering

Creating Two-Dimensional Patterned Substrates for Protein and Cell Confinement

1Department of Chemistry, Washington University in St. Louis

JoVE 3164

Self-assembled monolayers (SAMs) formed from long chain alkane thiols on gold provide well-defined substrates for the formation of protein patterns and cell confinement. Microcontact printing of hexadecanethiol using a polydimethylsiloxane (PDMS) stamp followed by backfilling with a glycol-terminated alkane thiol monomer produces a pattern where protein and cells adsorb only to the stamped hexadecanethiol region.

 JoVE Bioengineering

Soft Lithographic Functionalization and Patterning Oxide-free Silicon and Germanium

1Department of Chemistry, Duke University, 2Hajim School of Engineering and Applied Sciences, University of Rochester, 3Department of Chemical Engineering, University of Rochester

JoVE 3478

Here we describe a simple method for patterning oxide-free silicon and germanium with reactive organic monolayers and demonstrate functionalization of the patterned substrates with small molecules and proteins. The approach completely protects surfaces from chemical oxidation, provides precise control over feature morphology, and provides ready access to chemically discriminated patterns.

 JoVE Bioengineering

A Microfluidic Chip for the Versatile Chemical Analysis of Single Cells

1Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland

JoVE 50618

In this article we present a microfluidic chip for single cell analysis. It allows the quantification of intracellular proteins, enzymes, cofactors, and second messengers by means of fluorescent assays or immunoassays. 

 JoVE Bioengineering

ECM Protein Nanofibers and Nanostructures Engineered Using Surface-initiated Assembly

1Department of Biomedical Engineering, Carnegie Mellon University, 2Department of Materials Science and Engineering, Carnegie Mellon University

JoVE 51176

A method to obtain nanofibers and complex nanostructures from single or multiple extracellular matrix proteins is described. This method uses protein-surface interactions to create free-standing protein-based materials with tunable composition and architecture for use in a variety of tissue engineering and biotechnology applications.

 JoVE Bioengineering

Microfluidic Genipin Deposition Technique for Extended Culture of Micropatterned Vascular Muscular Thin Films

1Department of Biomedical Engineering, University of Minnesota

JoVE 52971

We present a method for microfluidic deposition of patterned genipin and fibronectin on PDMS substrates, allowing extended viability of vascular smooth muscle cell-dense tissues. This tissue fabrication method is combined with previous vascular muscular thin film technology to measure vascular contractility over disease-relevant time courses.

 JoVE Bioengineering

Preparation of Hydroxy-PAAm Hydrogels for Decoupling the Effects of Mechanotransduction Cues

1Laboratoire Interfaces et Fluides Complexes, Université de Mons

JoVE 51010

We present a new polyacrylamide hydrogel, called hydroxy-PAAm, that allows a direct binding of ECM proteins with minimal cost or expertise. The combination of hydroxy-PAAm hydrogels with microcontact printing facilitates independent control of many cues of the natural cell microenvironment for studying cellular mechanostransduction.

 JoVE Bioengineering

Studying Cell Rolling Trajectories on Asymmetric Receptor Patterns

1Department of Materials Science and Engineering, MIT - Massachusetts Institute of Technology, 2Department of Mechanical Engineering, MIT - Massachusetts Institute of Technology, 3HST Center for Biomedical Engineering and Harvard Stem Cell Institute, Brigham and Women's Hospital and Harvard Medical School

JoVE 2640

We describe a protocol to observe and analyze cell rolling trajectories on asymmetric receptor-patterned substrates. The resulting data are useful for engineering of receptor-patterned substrates for label-free cell separation and analysis.

 JoVE Bioengineering

Micropatterned Surfaces to Study Hyaluronic Acid Interactions with Cancer Cells

1Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University

JoVE 2413

A novel approach that allows the high-resolution analysis of cancer cell interactions with exogenous hyaluronic acid (HA) is described. Patterned surfaces are fabricated by combining carbodiimide chemistry and microcontact printing.

 JoVE Bioengineering

Capillary Force Lithography for Cardiac Tissue Engineering

1Department of Bioengineering, University of Washington, 2Department of Pathology, University of Washington

JoVE 50039

In this protocol, we demonstrate the fabrication of biomimetic cardiac cell culture substrata made from two distinct polymeric materials using capillary force lithography. The described methods provide a scalable, cost-effective technique to engineer the structure and function of macroscopic cardiac tissues for in vitro and in vivo applications.

 JoVE Bioengineering

Cell Patterning on Photolithographically Defined Parylene-C: SiO2 Substrates

1Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, 2Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, 3School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh

JoVE 50929

This protocol describes a microfabrication-compatible method for cell patterning on SiO2. A predefined parylene-C design is photolithographically printed on SiO2 wafers. Following incubation with serum (or other activation solution) cells adhere specifically to (and grow according to the conformity of) underlying parylene-C, whilst being repulsed by SiO2 regions.

 JoVE Bioengineering

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University

JoVE 52986

Advancements in biomaterial technologies enable the development of three-dimensional multi-cell-type constructs. We have developed electrospinning protocols to produce three individual scaffolds to culture the main structural cells of the airway to provide a 3D in vitro model of the airway bronchiole wall.

 JoVE Bioengineering

Cell Co-culture Patterning Using Aqueous Two-phase Systems

1Department of Biomedical Engineering, University of Michigan, 2Department of Macromolecular Science and Engineering, University of Michigan

JoVE 50304

Aqueous two-phase systems were used to simultaneously pattern multiple populations of cells. This fast and easy method for cell patterning takes advantage of the phase separation of aqueous solutions of dextran and polyethylene glycol and the interfacial tension that exists between the two polymer solutions.

 JoVE Bioengineering

Formation of Biomembrane Microarrays with a Squeegee-based Assembly Method

1Department of Electrical and Computer Engineering, University of Minnesota, 2Department of Biomedical Engineering, University of Minnesota, 3Department of Neurology, Mayo Clinic College of Medicine, 4Department of Immunology, Mayo Clinic College of Medicine

JoVE 51501

Supported lipid bilayers and natural membrane particles are convenient systems that can approximate the properties of cell membranes and be incorporated in a variety of analytical strategies. Here we demonstrate a method for preparing microarrays composed of supported lipid bilayer-coated SiO2 beads, phospholipid vesicles or natural membrane particles.

 JoVE Neuroscience

Imaging Dendritic Spines of Rat Primary Hippocampal Neurons using Structured Illumination Microscopy

1Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, 2Van Leeuwenhoek Centre for Advanced Microscopy, Section Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam

JoVE 51276

This article describes a working protocol to image dendritic spines from hippocampal neurons in vitro using Structured Illumination Microscopy (SIM). Super-resolution microscopy using SIM provides image resolution significantly beyond the light diffraction limit in all three spatial dimensions, allowing the imaging of individual dendritic spines with improved detail.

 JoVE Application Notes

3D Tissue Engineered Systems for Regenerative Approaches, Drug Discovery, and Toxicity Screening - ADVERTISEMENT

JoVE 5517

In vitro mammalian cell culture has served as an invaluable tool in cell biology for several decades. Classically, monolayer cultures of adherent cells were grown on flat and rigid two-dimensional (2D) substrates, such as polystyrene or glass. However, many cells, when isolated from tissues and placed onto stiff planar 2D cell culture surfaces, such as tissue culture plastic, become progressively flatter, divide aberrantly, and lose their differentiated phenotype1,2. While these two-dimensional cell culture studies have played a pivotal role in furthering our understanding of many biological processes, they do not emulate in vivo conditions.

 JoVE Bioengineering

Preparation of Mica Supported Lipid Bilayers for High Resolution Optical Microscopy Imaging

1School of Biological Sciences, Nanyang Technological University

JoVE 52054

We present a method of preparing mica supported lipid bilayers for high resolution microscopy. Mica is transparent and flat on an atomic scale, but rarely used in imaging because of handling difficulties; our preparation results in even deposition of the mica sheet, and reduces the material used in bilayer preparation.

 JoVE Bioengineering

Rapid Isolation of Viable Circulating Tumor Cells from Patient Blood Samples

1Department of Biomedical Engineering, Cornell University, 2BioCytics, Inc., 3Carolina BioOncology Institute, PLLC

JoVE 4248

Circulating tumor cells are isolated from the blood of cancer patients without inflicting cellular damage. Isolation of tumor cells is accomplished using a bimolecular surface of E-selectin in addition to antibodies against epithelial markers. A nanotube coating specifically promotes cancer cell adhesion resulting in high capture purities.

 JoVE Biology

Patterning of Embryonic Stem Cells Using the Bio Flip Chip

1Dept of Physics, MIT - Massachusetts Institute of Technology, 2Department of Electrical Engineering and Computer Science, MIT - Massachusetts Institute of Technology

JoVE 318

We demonstrate a simple method for placing cells at desired locations on a substrate. This method patterns cells by flipping a silicone chip containing microwells filled with cells onto the substrate. This method provides a new way to modulate diffusible and juxtacrine signaling between cells.

 JoVE Biology

In-vivo Detection of Protein-protein Interactions on Micro-patterned Surfaces

1Institute of Biophysics, Johannes Kepler Universitat Linz

JoVE 1969

This video shows experiments with subsequent analysis of protein-protein interactions by the use of micro-patterned surfaces. The approach offers the possibility to detect protein interactions in living cells and combines high throughput capabilities with the possibility to extract quantitative information.

More Results...
simple hit counter