Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Motor Neurons: Neurons which activate muscle cells.
 JoVE Neuroscience

The Culture of Primary Motor and Sensory Neurons in Defined Media on Electrospun Poly-L-lactide Nanofiber Scaffolds

1Department of Biomedical Engineering, University of Michigan, 2State Key Laboratory of Bioelectronics, Southeast University, 3Department of Neurology, University of Michigan, 4Geriatric Research, Education and Clinical Center, Veterans Affairs Ann Arbor Health System


JoVE 2389

 JoVE Neuroscience

Characterizing the Composition of Molecular Motors on Moving Axonal Cargo Using "Cargo Mapping" Analysis

1Department of Molecular and Experimental Medicine, Dorris Neuroscience Center, The Scripps Research Institute, 2Department of Cellular and Molecular Medicine, University of California San Diego, 3Department of Bioengineering, University of California San Diego, 4Department of Neurosciences, University of California San Diego School of Medicine


JoVE 52029

 JoVE Neuroscience

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota


JoVE 51631

 Science Education: Essentials of Neuropsychology

Using TMS to Measure Motor Excitability During Action Observation

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that involves passing current through an insulated coil placed against the scalp. A brief magnetic field is created by current in the coil, and because of the physical process of induction, this leads to a current in the nearby neural tissue. Depending on the duration, frequency, and magnitude of these magnetic pulses, the underlying neural circuitry can be affected in many different ways. Here, we demonstrate the technique of single-pulse TMS, in which one brief magnetic pulse is used to stimulate the neocortex. One observable effect of TMS is that it can produce muscle twitches when applied over the motor cortex. Due to the somatotopic organization of the motor cortex, different muscles can be targeted depending on the precise placement of the coil. The electrical signals that cause these muscle twitches, called motor evoked potentials, or MEPs, can be recorded and quantified by electrodes placed on the skin over the targeted muscle. The amplitude of MEPs can be interpreted to reflect the underlying excitability of the motor cortex; for example, when the motor cortex is activated, observed MEPs are larger.

 JoVE Behavior

Electrophysiological Motor Unit Number Estimation (MUNE) Measuring Compound Muscle Action Potential (CMAP) in Mouse Hindlimb Muscles

1Department of Neurology, The Ohio State University Wexner Medical Center, 2Department of Physical Medicine and Rehabilitation, The Ohio State University, 3Department of Neuroscience, The Ohio State University Wexner Medical Center, 4Department of Biochemistry and Pharmacology, The Ohio State University Wexner Medical Center


JoVE 52899

 JoVE Neuroscience

The Neuromuscular Junction: Measuring Synapse Size, Fragmentation and Changes in Synaptic Protein Density Using Confocal Fluorescence Microscopy

1Physiology and Bosch Institute, University of Sydney, 2Motor Neuron Disease Research Group, Australian School of Advanced Medicine, Macquarie University, 3Advanced Microscopy Facility, Bosch Institute, University of Sydney


JoVE 52220

 JoVE Neuroscience

A High Content Imaging Assay for Identification of Botulinum Neurotoxin Inhibitors

1Perkin Elmer Inc., 2Henry M. Jackson Foundation, 3The Geneva Foundation, 4ORISE, 5Frederick National Laboratory for Cancer Research, 6Division of Molecular and Translational Sciences, US Army Medical Research Institute of Infectious Diseases, 7DoD Biotechnology High Performance Computing Software Applications Institute (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command (USAMRMC)


JoVE 51915

 Science Education: Essentials of Neuropsychology

Motor Maps

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

One principle of brain organization is the topographic mapping of information. Especially in sensory and motor cortices, adjacent regions of the brain tend to represent information from adjacent parts of the body, resulting in maps of the body expressed on the surface of the brain. The primary sensory and motor maps in the brain surround a prominent sulcus known as the central sulcus. The cortex anterior to the central sulcus is known as the precentral gyrus and contains the primary motor cortex, while the cortex posterior to the central sulcus is known as the postcentral gyrus and contains the primary sensory cortex (Figure 1). Figure 1: Sensory and motor maps around the central sulcus. The primary motor cortex, which contains a motor map of the body's effectors, is anterior to the central sulcus, in the precentral gyrus of the frontal lobe. The primary somesthetic (sensory) cortex, which receives touch, pain, and temperature information from the external parts of the body, is located posterior to the central sulcus, in the postcentral gyrus of the parietal lobe.

 JoVE Neuroscience

Building An Open-source Robotic Stereotaxic Instrument

1Department of Psychology, Rutgers, The State University of New Jersey


JoVE 51006

12345678934
More Results...
Waiting
simple hit counter