Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
 JoVE Bioengineering

Characterization Of Multi-layered Fish Scales (Atractosteus spatula) Using Nanoindentation, X-ray CT, FTIR, and SEM

1Geotechnical and Structures Laboratory, U.S. Army Engineer Research and Development Center, 2Department of Mechanical Engineering, University of Alabama, 3Environmental Laboratory, U.S. Army Engineer Research and Development Center

 JoVE Bioengineering

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University

 Science Education: Essentials of Biology 1

Drosophila Development and Reproduction

JoVE Science Education

One of the many reasons that make Drosophila an extremely valuable organism is that the molecular, cellular, and genetic foundations of development are highly conserved between flies and higher eukaryotes such as humans. Drosophila progress through several developmental stages in a process known as the life cycle and each stage provides a unique platform for developmental research. This video introduces each stage of the Drosophila life cycle and details the physical characteristics and major developmental events that occur during each stage. Next, the video discusses the genetic regulation of pattern formation, which is important for establishing the body plan of the organism and specifying individual tissues and organs. In addition, this video gives an overview of Drosophila reproduction, and how to use the reproductive characteristics of Drosophila to set up a genetic cross. Finally, we discuss examples of how the principles of Drosophila development and reproduction can be applied to research. These applications include RNA interference, behavioral assays of mating behaviors, and live imaging techniques that allow us to visualize development as a dynamic process. Overall, this video highlights the importance of understanding development and reproduction in Drosophila, and how this knowledge can be use

 JoVE Bioengineering

Polymeric Microneedle Array Fabrication by Photolithography

1Department of Pharmacy, National University of Singapore, 2Singapore University of Technology and Design, 3Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), 4Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 5Mechanobiology Institute, National University of Singapore

 JoVE Medicine

A New Murine Model of Endovascular Aortic Aneurysm Repair

1INSERM U698 Cardiovascular Remodelling, Hôpital X. Bichat, AP-HP, Paris, 2Bio-Ingénierie des Polymères Cardiovasculaires (BPC), Institut Galilée - Université Paris 13, Paris, France, 3Service de Chirurgie Vasculaire, Hôpital Henri Mondor, AP-HP, Université Paris-Est Creteil, 4Ecole de chirurgie de l'assistance publique des hôpitaux de Paris, 5Service de Chirurgie Cardiaque et Vasculaire, Hôpital Européen Georges Pompidou, AP-HP, Université René Descartes

More Results...
simple hit counter