JoVE   
You have trial access to articles in this section through JoVE.

  JoVE Biology

  
You have trial access to articles in this section through JoVE.

  JoVE Neuroscience

  
You have trial access to articles in this section through JoVE.

  JoVE Immunology and Infection

  
You have trial access to articles in this section through JoVE.

  JoVE Clinical and Translational Medicine

  
You have subscription access to articles in this section through JoVE.

  JoVE Bioengineering

  
You have subscription access to articles in this section through JoVE.

  JoVE Applied Physics

  
You have subscription access to articles in this section through JoVE.

  JoVE Chemistry

  
You have subscription access to articles in this section through JoVE.

  JoVE Behavior

  
You have subscription access to articles in this section through JoVE.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You have subscription access to videos in this collection through JoVE.

Basic Methods in Cellular and Molecular Biology

You have subscription access to videos in this collection through JoVE.

Model Organisms I

You have subscription access to videos in this collection through JoVE.

Model Organisms II

You have subscription access to videos in this collection through JoVE.

Essentials of
Neuroscience

You have subscription access to videos in this collection through JoVE.

Refine your search:

Containing Text
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
Biology
Neuroscience
Immunology and Infection
Clinical and Translational Medicine
Bioengineering
Applied Physics
Chemistry
Behavior
Environment
 
 
Nanoparticles: Nanometer-sized particles that are nanoscale in three dimensions. They include nanocrystaline materials; Nanocapsules; Metal nanoparticles; Dendrimers, and Quantum dots. The uses of nanoparticles include Drug delivery systems and cancer targeting and imaging.
 JoVE Bioengineering

Therapeutic Gene Delivery and Transfection in Human Pancreatic Cancer Cells using Epidermal Growth Factor Receptor-targeted Gelatin Nanoparticles

1Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University


JoVE 3612

Type B gelatin-based engineered nanovectors system (GENS) was developed for systemic gene delivery and transfection in the treatment of pancreatic cancer. By modification with epidermal growth factor receptor (EGFR) specific peptide on the surface of nanparticles, they could target on EGFR receptor and release plasmid under reducing environment, such as high intracellular glutathione concentrations.

 JoVE Bioengineering

PLGA Nanoparticles Formed by Single- or Double-emulsion with Vitamin E-TPGS

1Barrow Brain Tumor Research Center, Barrow Neurological Institute


JoVE 51015

We describe the production and characterization of nanoparticles and microparticles composed of poly(lactic-co-glycolic acid) using vitamin E-TPGS as an emulsifier. By varying formulation parameters such as the concentration of emulsifier, it is possible to produce nanoparticles with mean diameters ranging from 220 nm to 1.98 µm.

 JoVE Bioengineering

Evaluation of Polymeric Gene Delivery Nanoparticles by Nanoparticle Tracking Analysis and High-throughput Flow Cytometry

1Biomedical Engineering Department, Johns Hopkins University School of Medicine, 2Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, 3Wilmer Eye Institute, Johns Hopkins University School of Medicine, 4Institute for Nanobiotechnology, Johns Hopkins University School of Medicine


JoVE 50176

A protocol for nanoparticle tracking analysis (NTA) and high-throughput flow cytometry to evaluate polymeric gene delivery nanoparticles is described. NTA is utilized to characterize the nanoparticle particle size distribution and the plasmid per particle distribution. High-throughput flow cytometry enables quantitative transfection efficacy evaluation for a library of gene delivery biomaterials.

 JoVE Bioengineering

Formulation of Diblock Polymeric Nanoparticles through Nanoprecipitation Technique

1Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 2Carolina Center for Nanotechnology Excellence, University of North Carolina


JoVE 3398

This article describes a nanoprecipitation method to synthesize polymer-based nanoparticles using diblock co-polymers. We will discuss the synthesis of diblock co-polymers, the nanoprecipitation technique, and potential applications.

 JoVE Bioengineering

Harvesting Murine Alveolar Macrophages and Evaluating Cellular Activation Induced by Polyanhydride Nanoparticles

1Department of Chemical and Biological Engineering, Iowa State University, 2Department of Veterinary Microbiology and Preventive Medicine, Iowa State University


JoVE 3883

Herein, we describe protocols for harvesting murine alveolar macrophages, which are resident innate immune cells in the lung, and examining their activation in response to co-culture with polyanhydride nanoparticles.

 JoVE Bioengineering

Analyzing Cellular Internalization of Nanoparticles and Bacteria by Multi-spectral Imaging Flow Cytometry

1Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 2Amnis Corporation, 3Department of Chemical and Biological Engineering, Iowa State University


JoVE 3884

In this article, we describe a method utilizing multi-spectral imaging flow cytometry to quantify the internalization of polyanhydride nanoparticles or bacteria by RAW 264.7 cells.

 JoVE Bioengineering

High-throughput Synthesis of Carbohydrates and Functionalization of Polyanhydride Nanoparticles

1Department of Chemical and Biological Engineering, Iowa State University, 2Department of Chemistry, Iowa State University


JoVE 3967

In this article, a high throughput method is presented for the synthesis of oligosaccharides and their attachment to the surface of polyanhydride nanoparticles for further use in targeting specific receptors on antigen presenting cells.

 JoVE Bioengineering

Harmonic Nanoparticles for Regenerative Research

1Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 2Physics Department, GAP-Biophotonics, University of Geneva, 3Laboratoire d'Optique Biomédicale (LOB), Faculté des Sciences et Techniques de l'Ingénieur, École Polytechnique Fédérale de Lausanne, 4Department of Clinical Medicine, School of Medicine, Trinity College Dublin, 5School of Medicine and CRANN, Trinity College Dublin, 6Nikon AG Instruments


JoVE 51333

Protocol details are provided for in vitro labeling human embryonic stem cells with second harmonic generating nanoparticles. Methodologies for hESC investigation by multi-photon microscopy and their differentiation into cardiac clusters are also presented.

 JoVE Chemistry

Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

1Oak Ridge Institute for Science and Education, 2Air Force Research Laboratory, Airbase Technology Division, 3School of Materials Science and Engineering, Clemson University


JoVE 51022

Silica nanoparticles were prepared using acid-catalysis of a siloxane precursor and microwave-assisted synthetic techniques resulting in the controlled growth of nanomaterials ranging from 30-250 nm in diameter. The growth dynamics can be controlled by varying the initial silicic acid concentration, time of the reaction, and temperature of reaction.

 JoVE Biology

Tangential Flow Ultrafiltration: A “Green” Method for the Size Selection and Concentration of Colloidal Silver Nanoparticles

1Department of Chemistry, Wright State University, 2Department of Neuroscience, Cell Biology, and Physiology, Wright State University


JoVE 4167

Tangential flow ultrafiltration (TFU) is a recirculation method used for the weight-based separation of biosamples. TFU was adapted to size-select (1-20 nm diameter) and highly concentrate a large volume of polydisperse silver nanoparticles (4 L of 15.2 μg ml-1 down to 4 ml of 8,539.9 μg ml-1) with minimal aggregation.

More Results...
Waiting
simple hit counter