Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Nuclear Reprogramming: The process that reverts Cell nuclei of fully differentiated somatic cells to a pluripotent or totipotent state. This process can be achieved to a certain extent by Nuclear transfer techniques, such as fusing somatic cell nuclei with enucleated pluripotent embryonic stem cells or enucleated totipotent oocytes. Gene expression profiling of the fused hybrid cells is used to determine the degree of reprogramming. Dramatic results of nuclear reprogramming include the generation of cloned mammals, such as Dolly the sheep in 1997.
 JoVE In-Press

Generation of Integration-free Induced Pluripotent Stem Cells from Human Peripheral Blood Mononuclear Cells using Episomal Vectors

1State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 2Division of Regenerative Medicine, Department of Medicine, Loma Linda University, 3Department of Orthopaedic Surgery, Loma Linda University, 4Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, 5Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, 6Collaborative Innovation Center for Cancer Medicine, 7Tianjin Key Laboratory of Blood Cell Therapy and Technology

Video Coming Soon

JoVE 55091

 JoVE Biology

Generation of Human Induced Pluripotent Stem Cells from Peripheral Blood Using the STEMCCA Lentiviral Vector

1Center for Regenerative Medicine (CReM), Boston University School of Medicine, 2Department of Hematology, Children's Hospital of Philadelphia, 3Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia


JoVE 4327

 JoVE Cancer Research

Establishment of Cancer Stem Cell Cultures from Human Conventional Osteosarcoma

1Department of Surgery and Translational Medicine (DCMT), University of Florence, 2Neurofarba Department, University of Florence, 3Department of Traumatology and General Orthopedics, Azienda Ospedaliera Universitaria Careggi


JoVE 53884

 JoVE Biology

Detection of Modified Forms of Cytosine Using Sensitive Immunohistochemistry

1Laboratoire de Neurophysiologie (CP601), ULB Neuroscience Institute (UNI), Université Libre de Bruxelles, 2Medical Molecular Sciences, Centre for Biomolecular Sciences, University of Nottingham, 3School of Life Sciences, University of Nottingham, 4Division of Cancer and Stem Cells, Centre for Biomolecular Sciences, School of Medicine, University of Nottingham


JoVE 54416

 JoVE Developmental Biology

An Enzyme- and Serum-free Neural Stem Cell Culture Model for EMT Investigation Suited for Drug Discovery

1Dept. of Biomedicine, Pharmacenter, University of Basel, 2Molecular Signalling and Gene Therapy, Narayana Nethralaya Foundation, Narayana Health City, 3Brain Ischemia and Regeneration, Department of Biomedicine, University Hospital Basel, 4Department of Neurosurgery, Klinikum Idar-Oberstein, 5Department of Neurosurgery and Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, 6Department of Neurology, Laboratory of Molecular Neuro Oncology, University Hospital of Zurich


JoVE 54018

 JoVE In-Press

Inactivation of mTor: A Tool to Investigate Meiotic Progression and Translational Control During Bovine Oocyte Maturation

1BVN Neustadt/Aisch, 2Faculty of Veterinary Medicine, Clinic for Obstetrics, Gynecology and Andrology of Large and Small Animals, Justus-Liebig-University Giessen, 3Reproductive Cell Biology Unit, Leibniz Institute for Farm Animal Biology, 4Reproductive Biochemistry Unit, Leibniz Institute for Farm Animal Biology

Video Coming Soon

JoVE 53689

 JoVE Medicine

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital


JoVE 54017

 JoVE Developmental Biology

Prediction and Validation of Gene Regulatory Elements Activated During Retinoic Acid Induced Embryonic Stem Cell Differentiation

1Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona, 2Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, 3MTA-DE “Lendulet” Immunogenomics Research Group, University of Debrecen


JoVE 53978

 JoVE Developmental Biology

Stable and Efficient Genetic Modification of Cells in the Adult Mouse V-SVZ for the Analysis of Neural Stem Cell Autonomous and Non-autonomous Effects

1Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), 2Centro de Investigaciones Biomédicas en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 3Departmento de Biologìa Celular, Universidad de Valencia, 4Institut de Biomedicina de la Universitat de Barcelona (IBUB), 5Department of Molecular and Translational Medicine, Fibroblast Reprogramming Unit, University of Brescia


JoVE 53282

12345678921
More Results...
Waiting
simple hit counter