Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Optic Nerve: The 2nd cranial nerve. The optic nerve conveys visual information from the retina to the brain. The nerve carries the axons of the retinal ganglion cells which sort at the optic chiasm and continue via the optic tracts to the brain. The largest projection is to the lateral geniculate nuclei; other important targets include the superior colliculi and the suprachiasmatic nuclei. Though known as the second cranial nerve, it is considered part of the central nervous system.
 JoVE Neuroscience

In vivo Imaging of Optic Nerve Fiber Integrity by Contrast-Enhanced MRI in Mice

1Hans Berger Department of Neurology, Jena University Hospital, 2Immunology, Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, 3Institute of Diagnostic and Interventional Radiology, Medical Physics Group, Jena University Hospital


JoVE 51274

 JoVE Medicine

Experimental Glaucoma Induced by Ocular Injection of Magnetic Microspheres

1Ocular Biology and Therapeutics, University College London Institute of Ophthalmology, 2University College London Institue of Ophthalmology, 3Moorfields Eye Hospital, 4NIHR Biomedical Research Centre, Moorfields Eye Hospital, 5Schepens Eye Research Institute, Harvard Medical School, 6Hoffman-La Roche


JoVE 52400

 Science Education: Essentials of Physical Examinations II

Ophthalmoscopic Examination

JoVE Science Education

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

The simplest ophthalmoscopes consist of an aperture to look through, a diopter indicator, and a disc for selecting lenses. The ophthalmoscope is primarily used to examine the fundus, or the inner wall of the posterior eye, which consists of the choroid, retina, fovea, macula, optic disc, and retinal vessels (Figure 1). The spherical eyeball collects and focuses light on the neurosensory cells of the retina. Light is refracted as it passes sequentially through the cornea, the lens, and the vitreous body. The first landmark observed during the funduscopic exam is the optic disc, which is where the optic nerve and retinal vessels enter the back of the eye (Figure 2). The disc usually contains a central whitish physiologic cup where the vessels enter; it normally occupies less than half the diameter of the entire disc. Just lateral and slightly inferior is the fovea, a darkened circular area that demarcates the point of central vision. Around this is the macula. A blind spot approximately 15° temporal to the line of gaze results from a lack of photoreceptor cells at the optic disc.

 Science Education: Essentials of Physical Examinations II

Eye Exam

JoVE Science Education

Source: Richard Glickman-Simon, MD, Assistant Professor, Department of Public Health and Community Medicine, Tufts University School of Medicine, MA

Proper evaluation of the eyes in a general practice setting involves vision testing, orbit inspection, and ophthalmoscopic examination. Before beginning the exam, it is crucial to be familiar with the anatomy and physiology of the eye. The upper eyelid should be slightly over the iris, but it shouldn't cover the pupil when open; the lower lid lies below the iris. The sclera normally appears white or slightly buff in color. The appearance of conjunctiva, a transparent membrane covering the anterior sclera and the inner eyelids, is a sensitive indicator of ocular disorders, such as infections and inflammation. The tear-producing lacrimal gland lies above and lateral to the eyeball. Tears spread down and across the eye to drain medially into two lacrimal puncta before passing into the lacrimal sac and nasolacrimal duct to the nose. The iris divides the anterior from the posterior chamber. Muscles of the iris control the size of the pupil, and muscles of the ciliary body behind it control the focal length of the lens. The ciliary body also produces aqueous humor, which largely determines intraocular pressure (Figure 1). Cranial nerve

 JoVE Biology

Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope

1INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 2Université de Nîmes, 3CNRS, IES, UMR 5214, 4Aix-Marseille Université, CNRS, École Centrale Marseille, Institut Fresnel, UMR 7249, 5Montpellier RIO Imaging (MRI)


JoVE 54262

 JoVE Medicine

Use of Rabbit Eyes in Pharmacokinetic Studies of Intraocular Drugs

1Department of Ophthalmology, Seoul National University Bundang Hospital, 2Department of Ophthalmology, College of Medicine, Seoul National University, 3Department of Ophthalmology, Hanyang University Hospital, 4Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, 5Department of Clinical Pharmacology, Seoul National University Hospital, 6Department of Clinical Pharmacology, Seoul National University Bundang Hospital


JoVE 53878

 JoVE Biology

Method for the Assessment of Effects of a Range of Wavelengths and Intensities of Red/near-infrared Light Therapy on Oxidative Stress In Vitro

1Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, 2School of Animal Biology and The Oceans Institute, The University of Western Australia, 3Experimental and Regenerative Neurosciences, School of Anatomy, Physiology and Human Biology, The University of Western Australia


JoVE 52221

 JoVE Neuroscience

Imaging Ca2+ Dynamics in Cone Photoreceptor Axon Terminals of the Mouse Retina

1Institute for Ophthalmic Research, University of Tübingen, 2Graduate School of Cellular & Molecular Neuroscience, University of Tübingen, 3Bernstein Centre for Computational Neuroscience, University of Tübingen, 4Molecular Genetics Laboratory, University of Tübingen, 5Centre for Ophthalmology, University of Tübingen


JoVE 52588

 JoVE Neuroscience

Vibratome Sectioning Mouse Retina to Prepare Photoreceptor Cultures

1Department of Genetics, UMR_S 968, Institut de la Vision, 2Department of Visual Information, UMR_S 968, Institut de la Vision, 3Exploratory Team, UMR_S 968, Institut de la Vision, 4Sorbonne Universités, Paris 06, UMR_S 968, Institut de la Vision, 5INSERM, U968, Institut de la Vision, 6CNRS, UMR_7210, Institut de la Vision


JoVE 51954

 JoVE Neuroscience

Optogenetic Stimulation of the Auditory Nerve

1InnerEarLab, Department of Otolaryngology, University Medical Center Goettingen, 2Bernstein Focus for Neurotechnology, University of Goettingen, 3Auditory Systems Physiology Group, Department of Otolaryngology, University Medical Center Goettingen, 4Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Goettingen, 5Department of Chemical, Electronic, and Biomedical Engineering, University of Guanajuato


JoVE 52069

 JoVE Medicine

A Murine Model of Cervical Spinal Cord Injury to Study Post-lesional Respiratory Neuroplasticity

1UFR des sciences de la santé - Simone Veil, Université de Versailles Saint-Quentin-en-Yvelines, 2Service de Physiologie - Explorations fonctionnelles, Hôpital Ambroise Paré, 3Services de Physiologie, Explorations Fonctionnelles, Réanimation Médicale et Centre d'Investigation Clinique et d'Innovation Technologique (Unité Inserm 805), Université de Versailles Saint-Quentin-en-Yvelines


JoVE 51235

12345678918
More Results...
Waiting
simple hit counter