Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Proton Pumps: Integral membrane proteins that transport protons across a membrane. This transport can be linked to the hydrolysis of Adenosine triphosphate. What is referred to as proton pump inhibitors frequently is about Potassium hydrogen atpase.
 JoVE Immunology and Infection

Monitoring Changes in Membrane Polarity, Membrane Integrity, and Intracellular Ion Concentrations in Streptococcus pneumoniae Using Fluorescent Dyes

1Department of Microbiology and Immunology, University at Buffalo, State University of New York, 2Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, State University of New York, 3New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York


JoVE 51008

 JoVE Neuroscience

In vivo Optogenetic Stimulation of the Rodent Central Nervous System

1Department of Psychiatry, University of Pittsburgh Medical Center, 2Department of Bioengineering, Stanford University, 3Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 4Department of Neurobiology and Behavior, Cornell University, 5Department of Psychiatry and Behavioral Sciences, Stanford University


JoVE 51483

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota


JoVE 51631

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Organic Chemistry

Nuclear Magnetic Resonance (NMR) Spectroscopy

JoVE Science Education

Source: Laboratory of Dr. Henrik Sundén – Chalmers University of Technology

Nuclear magnetic resonance (NMR) spectroscopy is a vital analysis technique for organic chemists. With the help of NMR, the work in the organic lab has been facilitated tremendously. Not only can it provide information about the structure of a molecule but also determine the content and purity of a sample. Compared with other commonly encountered techniques for organic chemists — such as thermal analysis and mass spectrometry (MS) — NMR is a non-destructive method that is valuable when recovery of the sample is important. One of the most frequently used NMR techniques for an organic chemist is proton (1H) NMR. The protons present in a molecule will behave differently depending on its surrounding chemical environment, making it possible to elucidate its structure. Moreover, it is possible to monitor the completion of a reaction by comparing NMR spectra of the starting material to that of the final product. This video exemplifies how NMR spectroscopy can be used in the everyday work of an organic chemist. The following will be shown: i) preparation of an NMR sample. ii) Using 1H NMR to monitor a reaction. iii) Identifying the product obtained from

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Science

Proton Exchange Membrane Fuel Cells

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

The United States consumes a large amount of energy – the current rate is around 97.5 quadrillion BTUs annually. The vast majority (90%) of this energy comes from non-renewable fuel sources. This energy is used for electricity (39%), transportation (28%), industry (22%), and residential/commercial use (11%). As the world has a limited supply of these non-renewable sources, the United States (among others) is expanding the use of renewable energy sources to meet future energy needs. One of these sources is hydrogen. Hydrogen is considered a potential renewable fuel source, because it meets many important criteria: it’s available domestically, it has few harmful pollutants, it’s energy efficient, and it’s easy to harness. While hydrogen is the most abundant element in the universe, it is only found in compound form on Earth. For example, it is combined with oxygen in water as H2O. To be useful as a fuel, it needs to be in the form of H2 gas. Therefore, if hydrogen is to be used as a fuel for cars or other electronics, H2 needs to be made first. Thusly, hydrogen is often called an “energy carrier” rather than a “fuel.”

Results below contain some, but not all of your search terms.

Results below contain some, but not all of your search terms.
 JoVE Chemistry

Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

1Faculty of Pharmacy, The University of Sydney, 2School of Science and Health, University of Western Sydney, 3Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, 4Nature Publishing Group


JoVE 51740

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

1Center for Advanced Microstructures and Devices (CAMD), Louisiana State University, 2Center for Atomic-Level Catalyst Design, Cain Department of Chemical Engineering, Louisiana State University, 3Department of Biological and Agricultural Engineering, Louisiana State University, 4Argonne National Laboratory


JoVE 50711

Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Determination of the Transport Rate of Xenobiotics and Nanomaterials Across the Placenta using the ex vivo Human Placental Perfusion Model

1Department of Obstetrics, Perinatal Pharmacology, University Hospital Zurich, 2Laboratory for Materials - Biology Interactions, EMPA Swiss Federal Laboratories for Materials Testing and Research, 3Graduate School for Cellular and Biomedical Sciences, University of Bern


JoVE 50401

Results below contain some, but not all of your search terms.
123458
More Results...
Waiting
simple hit counter