Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Quantum Dots: Nanometer sized fragments (the dots) of semiconductor crystalline material which emit Photons. The wavelength is based on the quantum confinement size of the dot. They are brighter and more persistent than organic chemical Indicators. They can be embedded in Microbeads for high throughput Analytical chemistry.
 JoVE Bioengineering

Production and Targeting of Monovalent Quantum Dots

1Department of Otolaryngology, University of California, San Francisco, 2Department of Chemistry, University of California, Berkeley, 3Materials Science Division, Lawrence Berkeley National Laboratory, 4Department of Pharmaceutical Chemistry, University of California, San Francisco, 5Tetrad Graduate Program, University of California, San Francisco, 6Center for Systems and Synthetic Biology, University of California, San Francisco, 7Chemistry and Chemical Biology Graduate Program, University of California, San Francisco


JoVE 52198

 JoVE Biology

Mapping Molecular Diffusion in the Plasma Membrane by Multiple-Target Tracing (MTT)

1Institut National de la Santé et de la Recherche Médicale, UMR 631, Parc scientifique de Luminy, 2Centre National de la Recherche Scientifique, UMR 6102, Parc scientifique de Luminy, 3Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University, 4École Centrale Marseille, Technopôle de Château-Gombert, 5Institut Fresnel, Aix-Marseille University, 6Centre National de la Recherche Scientifique, UMR 6133, Aix-Marseille University


JoVE 3599

 JoVE Bioengineering

A Step Beyond BRET: Fluorescence by Unbound Excitation from Luminescence (FUEL)

1Plate-Forme d'Imagerie Dynamique, Imagopole, Institut Pasteur, 2Department of Radiation Oncology, Stanford School of Medicine, 3Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, 4Vanderbilt School of Medicine, 5The Walter & Eliza Hall Institute of Medical Research, 6Unité INSERM U786, Institut Pasteur, 7Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur


JoVE 51549

 JoVE Bioengineering

Correlative Light- and Electron Microscopy Using Quantum Dot Nanoparticles

1South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales Australia, 2School of Medicine, Western Sydney University, 3Correlative Microscopy Group, Ingham Institute for Applied Medical Research, 4Electron Microscopy Laboratory, Department of Anatomical Pathology, Sydney South West Pathology Service, New South Wales Health Pathology, 5School of Medical Sciences, Faculty of Medicine, University of New South Wales Australia


JoVE 54307

 JoVE Chemistry

Seeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals

1Department of Chemical Engineering, UC Berkeley, 2Department of Materials Science and Engineering, UC Berkeley, 3Department of Chemistry, UC Berkeley, 4Materials Sciences Division, Lawrence Berkeley National Laboratory, 5Department of Chemistry, University of Chicago, 6Center for Nanoscale Materials, Argonne National Laboratory


JoVE 50731

 JoVE Medicine

Extended Time-lapse Intravital Imaging of Real-time Multicellular Dynamics in the Tumor Microenvironment

1Department of Anatomy & Structural Biology, Albert Einstein College of Medicine, 2Department of Radiology, Albert Einstein College of Medicine, 3Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 4Integrated Imaging Program, Albert Einstein College of Medicine


JoVE 54042

 JoVE Engineering

Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films

1Department of Materials Science and Engineering, Clemson University, 2Department of Materials Science and Engineering, Texas A&M University, 3Department of Electrical and Computer Engineering, Texas A&M University, 4College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, 5Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6Department of Mechanical Engineering, Virginia Polytechnic Institute, 7Microphotonics Center, Massachusetts Institute of Technology


JoVE 54379

 JoVE Engineering

Atomically Traceable Nanostructure Fabrication

1Zyvex Labs, 2Department of Physics, University of Texas at Dallas, 3Department of Materials Science and Engineering, University of Texas at Dallas, 4Materials Science and Engineering, University of North Texas, 5National Institute of Standards and Technology


JoVE 52900

 JoVE Bioengineering

Harmonic Nanoparticles for Regenerative Research

1Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 2Physics Department, GAP-Biophotonics, University of Geneva, 3Laboratoire d'Optique Biomédicale (LOB), Faculté des Sciences et Techniques de l'Ingénieur, École Polytechnique Fédérale de Lausanne, 4Department of Clinical Medicine, School of Medicine, Trinity College Dublin, 5School of Medicine and CRANN, Trinity College Dublin, 6Nikon AG Instruments


JoVE 51333

 Science Education: Essentials of Organic Chemistry

Schlenk Lines Transfer of Solvents

JoVE Science Education

Source: Laboratory of Dr. Ian Tonks — University of Minnesota Twin Cities

Schlenk lines and high vacuum lines are both used to exclude moisture and oxygen from reactions by running reactions under a slight overpressure of inert gas (usually N2 or Ar) or under vacuum. Vacuum transfer has been developed as a method separate solvents (other volatile reagents) from drying agents (or other nonvolatile agents) and dispense them to reaction or storage vessels while maintaining an air-free environment. Similar to thermal distillations, vacuum transfer separates solvents by vaporizing and condensing them in another receiving vessel; however, vacuum transfers utilize the low pressure in the manifolds of Schlenk and high vacuum lines to lower boiling points to room temperature or below, allowing for cryogenic distillations. This technique can provide a safer alternative to thermal distillation for the collection of air- and moisture-free solvents. After the vacuum transfer, the water content of the collected solvent can be tested quantitatively by Karl Fischer titration, qualitatively by titration with a Na/Ph2CO solution, or by 1H NMR spectroscopy.

 JoVE Chemistry

Synthesis of Ligand-free CdS Nanoparticles within a Sulfur Copolymer Matrix

1Department of Materials Science and Engineering, University of Washington, 2Molecular Engineering and Sciences Institute, University of Washington, 3Clean Energy Institute, University of Washington, 4Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 5Department of Chemical Engineering, University of Washington, 6Department of Chemistry, University of Washington


JoVE 54047

123459
More Results...
Waiting
simple hit counter