Refine your search:

Containing Text
Filter by author or institution
Filter by publication date
October, 2006
Filter by section
 Science Education: Essentials of Cognitive Psychology

Measuring Reaction Time and Donders' Method of Subtraction

JoVE Science Education

Source: Laboratory of Jonathan Flombaum—Johns Hopkins University

The ambition of experimental psychology is to characterize the mental events that support the human ability to solve problems, perceive the world, and turn thoughts into words and sentences. But people cannot see or feel those mental events; they cannot be weighed, combined in test tubes, or grown in a dish. Wanting to study mental life, nonetheless, Franciscus Donders, a Dutch ophthalmologist in the early 1800s, came up with a property that he could measure—even back then: he measured the time it took for human subjects to perform simple tasks, reasoning that he could treat those measurements as proxies for the time it takes to complete the unobservable mental operations involved. In fact, Donders went one step further, developing a basic experimental paradigm known as the Method of Subtraction. It simply asks a researcher to design two tasks that are identical in nearly every way, excepting a mental operation hypothesized to be involved in one of the tasks and omitted in the other. The researcher then measures the time it takes to complete each task, and by subtracting the outcomes, he extracts an estimate of the time it takes to execute the one mental operation of interest. In this way, the method allows a researcher

 JoVE Neuroscience

Kinematics and Ground Reaction Force Determination: A Demonstration Quantifying Locomotor Abilities of Young Adult, Middle-aged, and Geriatric Rats

1CullenWebb Animal Neurology & Ophthalmology Center, Riverview, NB, 2Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, 3Department of Comparative Biology and Experimental Medicine, University of Calgary, 4Department of Neuroscience, University of Calgary

 Science Education: Essentials of Environmental Microbiology

Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Polymerase chain reaction (PCR) is a technique used to detect microorganisms that are present in soil, water, and atmospheric environments. By amplifying specific sections of DNA, PCR can facilitate the detection and identification of target microorganisms down to the species, strain, and serovar/pathovar level. The technique can also be utilized to characterize entire communities of microorganisms in samples. The culturing of microorganisms in the laboratory using specialized growth media is a long-established technique and remains in use for the detection of microorganisms in environmental samples. Many microbes in the natural environment, while alive, maintain low levels of metabolic activity and/or doubling times and are thus referred to as viable but non-culturable (VBNC) organisms. The use of culture-based techniques alone cannot detect these microbes and, therefore, does not provide a thorough assessment of microbial populations in samples. The use of PCR allows for the detection of culturable microbes, VBNC organisms, and those that are no longer alive or active, as the amplification of genetic sequences does not generally require the pre-enrichment of microorga

 JoVE Chemistry

Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents

1Faculty of Pharmacy, The University of Sydney, 2School of Science and Health, University of Western Sydney, 3Division of Chemistry and Environmental Science, School of Science and the Environment, Manchester Metropolitan University, 4Nature Publishing Group

 Science Education: Basic Methods in Cellular and Molecular Biology

PCR: The Polymerase Chain Reaction

JoVE Science Education

The polymerase chain reaction, or PCR, is a technique used to amplify DNA through thermocycling – cyles of temperature changes at fixed time intervals. Using a thermostable DNA polymerase, PCR can create numerous copies of DNA from DNA building blocks called dinucleoside triphosphates or dNTPs. There are three steps in PCR: denaturation, annealing, and elongation. Denaturation is the first step in the cycle and causes the DNA to melt by disrupting hydrogen bonds between the bases resulting in single-stranded DNA. Annealing lowers the temperature enough to allow the binding of oligonucleotide primers to the DNA template. During the elongation step DNA polymerase will synthesize new double-stranded DNA. This video provides an introduction to the PCR procedure. The basic principles of PCR are described as well as a step-by-step procedure for setting up a generalized PCR reaction. The video shows the necessary components for a PCR reaction, includes instruction for primer design, and provides helpful hints for ensuring successful PCR reactions.

 JoVE Chemistry

Conducting Miller-Urey Experiments

1School of Chemistry and Biochemistry, Georgia Institute of Technology, 2Earth-Life Science Institute, Tokyo Institute of Technology, 3Institute for Advanced Study, 4Astromaterials Research and Exploration Science Directorate, NASA Johnson Space Center, 5Goddard Center for Astrobiology, NASA Goddard Space Flight Center, 6Geosciences Research Division, Scripps Institution of Oceanography, University of California at San Diego

 JoVE Biology

Enhanced Reduced Representation Bisulfite Sequencing for Assessment of DNA Methylation at Base Pair Resolution

1Department of Medicine, Weill Cornell Medical College, 2Institute for Computational Biomedicine, Weill Cornell Medical College, 3Department of Physiology and Biophysics, Weill Cornell Medical College, 4Department of Pathology, University of Michigan

 JoVE Behavior

Vision Training Methods for Sports Concussion Mitigation and Management

1Neurology and Rehabilitative Medicine, University of Cincinnati, 2Division of Sports Medicine, Department of Orthopaedic Surgery, University of Cincinnati, 3Department of Athletics, University of Cincinnati, 4Department of Neurosurgery, University of Cincinnati, 5College of Education, Criminal Justice, and Human Services, University of Cincinnati, 6Division of Sports Medicine, Cincinnati Children's Hospital Medical Center

 JoVE Developmental Biology

Understanding Early Organogenesis Using a Simplified In Situ Hybridization Protocol in Xenopus

1Developmental and Stem Cell Biology, Hospital for Sick Children, 2Children's Health Research Institute, University of Western Ontario, 3Department of Physiology and Pharmacology, University of Western Ontario, 4Neurosciences and Mental Health, Hospital for Sick Children, 5Department of Paediatrics, University of Western Ontario

 JoVE Biology

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

1Department of Biology, California Institute of Technology, 2Department of Bioengineering, California Institute of Technology, 3Synthetic Biology Center, Department of Bioengineering, Massachusetts Institute of Technology, 4School of Physics and Astronomy, University of Minnesota

 JoVE Biology

Quantitative, Real-time Analysis of Base Excision Repair Activity in Cell Lysates Utilizing Lesion-specific Molecular Beacons

1Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, 2Hillman Cancer Center, University of Pittsburgh Cancer Institute, 3Department of Experimental Therapy, The Netherlands Cancer Institute, 4Department of Human Genetics, University of Pittsburgh School of Public Health

 JoVE Immunology and Infection

Pairwise Growth Competition Assay for Determining the Replication Fitness of Human Immunodeficiency Viruses

1Department of Microbiology, University of Washington, 2Departments of Medicine and Laboratory Medicine, University of Washington, 3U.S Military HIV Research Program, Walter Reed Army Institute of Research, 4Henry M. Jackson Foundation

More Results...
simple hit counter