Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Reflex, Monosynaptic: A reflex in which the Afferent neurons synapse directly on the Efferent neurons, without any Intercalated neurons. (Lockard, Desk Reference for Neuroscience, 2nd ed.)
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations III

Motor Exam II

JoVE Science Education

Source:Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA

There are two main types of reflexes that are tested on a neurological examination: stretch or deep tendon reflexes, and superficial reflexes. A deep tendon reflex (DTR) results from the stimulation of a stretch-sensitive afferent from a neuromuscular spindle, which, via a single synapse, stimulates a motor nerve leading to a muscle contraction. DTRs are increased in chronic upper motor neuron lesions (lesions of the pyramidal tract) and decreased in lower motor neuron lesions and nerve and muscle disorders. There is a wide variation of responses and reflexes graded from 0 to 4+ (Table 1). DTRs are commonly tested to help localize neurologic disorders. A common method of recording findings during the DTRs examination is using of a stick ure diagram. The DTR test can help distinguish upper and lower motor neuron problems and can assist in localizing nerve root compression as well. Although the DTR of nearly any skeletal muscle could be tested, the reflexes that are routinely tested are: brachioradialis, biceps, triceps, patellar, and Achilles (Table 2). Superficial reflexes are segmental reflex responses that result from stimulation of a specific s

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

Assessing Changes in Volatile General Anesthetic Sensitivity of Mice after Local or Systemic Pharmacological Intervention

1Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 2Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, 3Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 4Center for Sleep and Circadian Neurobiology, Perelman School of Medicine, University of Pennsylvania


JoVE 51079

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations III

Cranial Nerves Exam I (I-VI)

JoVE Science Education

Source: Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA

During each section of the neurological testing the examiner uses the powers of observation to assess the patient. In some cases cranial nerve dysfunction is readily apparent: a patient might mention a characteristic chief complaint (such as loss of smell or diplopia), or a visually evident physical sign of cranial nerve involvement, such as in facial nerve palsy. However, in many cases a patient's history doesn't directly suggest cranial nerve pathologies, as some of them (such as sixth nerve palsy) may have subtle manifestations and can only be uncovered by a careful neurological exam. Importantly, a variety of pathological conditions that are associated with alterations in mental status (such as some neurodegenerative disorders or brain lesions) can also cause cranial nerve dysfunction, therefore any abnormal findings during a mental status exam should prompt a careful and complete neurological exam. The cranial nerve examination is applied neuroanatomy. The cranial nerves are symmetrical, therefore while performing the examination each side should be compared to the other. A physician should approach the examination in a systematic fashion and go through the

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

A Behavioral Assay for Mechanosensation of MARCM-based Clones in Drosophila melanogaster

1Department of Biology, College of the Holy Cross, 2School of Medicine, Georgetown University, 3Department of Biochemistry, Giesel School of Medicine, Dartmouth College, 4School of Medicine, Tufts University, 5Transgenomic Inc., 6Department of Molecular, Cell and Cancer Biology, UMass Medical School


JoVE 53537

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Behavior

Use of the Operant Orofacial Pain Assessment Device (OPAD) to Measure Changes in Nociceptive Behavior

1Department of Oral and Maxillofacial Surgery, University of Florida College of Dentistry, 2Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, 3Stoelting Co., 4Department of Orthodontics, University of Florida


JoVE 50336

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Lab Animal Research

Anesthesia Induction and Maintenance

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

The Guide for the Care and Use of Laboratory Animals ("The Guide") states that pain assessment and alleviation are integral components of the veterinary care of laboratory animals.1 The definition of anesthesia is the loss of feeling or sensation. It is a dynamic event involving changes in anesthetic depth with respect to an animal's metabolism, surgical stimulation, or variations in the external environment.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations III

Neck Exam

JoVE Science Education

Source: Robert E. Sallis, MD. Kaiser Permanente, Fontana, California, USA

Examination of the neck can be a challenge because of the many bones, joints, and ligaments that make up the underlying cervical spine. The cervical spine is composed of seven vertebrae stacked in gentle C-shaped curve. The anterior part of each vertebra is made up of the thick bony body, which is linked to the body above and below by intervertebral discs. These discs help provide stability and shock absorption to the cervical spine. The posterior elements of the vertebra, which include the laminae, transverse, and spinous processes and the facet joints, form a protective canal for the cervical spinal cord and its nerve roots. The cervical spine supports the head and protects the neural elements as they come from the brain and from the spinal cord. Therefore, injuries or disorders affecting the neck can also affect the underlying spinal cord and have potentially catastrophic consequences. The significant motion that occurs in the neck places the cervical spine at increased risk for injury and degenerative changes. The cervical spine is also a common source of radicular pain in the shoulder. For this reason, the neck should be evaluated as a routine part of every shoulder exam.

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Physical Examinations III

Cranial Nerves Exam II (VII-XII)

JoVE Science Education

Source: Tracey A. Milligan, MD; Tamara B. Kaplan, MD; Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA

The cranial nerve (CN) examination follows the mental status evaluation in a neurological exam. However, the examination of the cranial nerves begins with observations made upon greeting the patient. For example, weakness of the facial muscles that are innervated by the cranial nerve VII can be readily apparent during the first encounter with the patient. Cranial nerve VII, the Facial nerve, also has sensory branches, which innervate the taste buds on the anterior two-thirds of the tongue and the medial aspect of the external auditory canal. Therefore, finding ipsilateral taste dysfunction in the patient with facial weakness confirms the involvement of CN VII. In addition, knowledge of the neuroanatomy helps the clinician to localize level of the lesion: unilateral weakness of the lower facial muscles suggests a supranuclear lesion on the opposite side, while lesions involving the nuclear or infranuclear portion of the facial nerve, manifest with an ipsilateral paralysis of all the facial muscles on the involved side. Cranial nerve VIII, the Acoustic nerve, has two divisions: the hearing (cochlear) division, and the vestibular division, which innervates the semicirc

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

Lateral Fluid Percussion: Model of Traumatic Brain Injury in Mice

1Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 2Spinal Cord and Brain Injury Research Center, 3Department of Anatomy and Neurobiology, Department of Physical Medicine and Rehabilitation, University of Kentucky Chandler Medical Center


JoVE 3063

Results below contain some, but not all of your search terms.
 JoVE Neuroscience

Functional Imaging of Auditory Cortex in Adult Cats using High-field fMRI

1Department of Physiology and Pharmacology, University of Western Ontario, 2Department of Psychology, University of Western Ontario, 3Department of Medical Biophysics, University of Western Ontario, 4Brain and Mind Institute, University of Western Ontario, 5Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, 6Cerebral Systems Laboratory, University of Western Ontario, 7National Centre for Audiology, University of Western Ontario


JoVE 50872

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

The Arteriovenous (AV) Loop in a Small Animal Model to Study Angiogenesis and Vascularized Tissue Engineering

1Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, University Hospital of Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 2Genetic Engineering and Biotechnology Institute for Postgraduate Studies, Baghdad University, 3Department of Plastic, Hand and Microsurgery, Sana Klinikum Hof GmbH


JoVE 54676

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection

1Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM, 2Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), 3Instituto de Investigación Sanitaria La Paz (IdiPAZ), 4Facultad de Veterinaria, Universidad Complutense de Madrid, 5Departmento de Otorrino laringología, Hospital Universitario La Paz

Video Coming Soon

JoVE 54951

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

The Neuromuscular Junction: Measuring Synapse Size, Fragmentation and Changes in Synaptic Protein Density Using Confocal Fluorescence Microscopy

1Physiology and Bosch Institute, University of Sydney, 2Motor Neuron Disease Research Group, Australian School of Advanced Medicine, Macquarie University, 3Advanced Microscopy Facility, Bosch Institute, University of Sydney


JoVE 52220

123459
More Results...
Waiting
simple hit counter