Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Spectroscopy, Near-Infrared: A noninvasive technique that uses the differential absorption properties of hemoglobin and myoglobin to evaluate tissue oxygenation and indirectly can measure regional hemodynamics and blood flow. Near-infrared light (Nir) can propagate through tissues and at particular wavelengths is differentially absorbed by oxygenated vs. deoxygenated forms of hemoglobin and myoglobin. Illumination of intact tissue with Nir allows qualitative assessment of changes in the tissue concentration of these molecules. The analysis is also used to determine body composition.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Construction of Models for Nondestructive Prediction of Ingredient Contents in Blueberries by Near-infrared Spectroscopy Based on HPLC Measurements

1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 2Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3Institute of Agriculture, Tokyo University of Agriculture and Technology


JoVE 53981

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

1Department of Bioengineering, University of Illinois at Chicago, 2Department of Pathology, University of Illinois at Chicago, 3Department of Biological Sciences, University of Illinois at Chicago, 4Department of Chemistry, University of Illinois at Chicago, 5Department of Nephrology, University of Illinois at Chicago


JoVE 52332

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Behavior

Using Fiberless, Wearable fNIRS to Monitor Brain Activity in Real-world Cognitive Tasks

1Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, 2Infrared Imaging Lab, Institute for Advanced Biomedical Technology (ITAB), Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, 3Institute of Cognitive Neuroscience, Alexandra House, University College London


JoVE 53336

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

Phosphorus-31 Magnetic Resonance Spectroscopy: A Tool for Measuring In Vivo Mitochondrial Oxidative Phosphorylation Capacity in Human Skeletal Muscle

1Davis Heart and Lung Research Institute, The Ohio State University, 2Laboratory of Clinical Investigation, National Institute on Aging, 3Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, 4Department of Human Sciences, Human Nutrition, The Ohio State University, 5Division of Endocrinology and Diabetes, Department of Pediatrics, University of Pennsylvania

Video Coming Soon

JoVE 54977

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

A Model to Simulate Clinically Relevant Hypoxia in Humans

1Department of Anaesthesiology and Intensive Care Medicine, University Hospital of Bonn, 2Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, 3Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, 4Institute of Physiology 2, University of Bonn

Video Coming Soon

JoVE 54933

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Behavior

fMRI Validation of fNIRS Measurements During a Naturalistic Task

1Department of Psychiatry, Yale School of Medicine, 2Department of Electronics and Bioinformatics, Meiji University, 3Department of Histology and Neurobiology, Dokkyo Medical University School of Medicine, 4ADAM Center, Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, 5Department of Neurobiology, Yale School of Medicine


JoVE 52116

Results below contain some, but not all of your search terms.
 JoVE Engineering

The Evolution of Silica Nanoparticle-polyester Coatings on Surfaces Exposed to Sunlight

1School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, 2BlueScope Steel Research, 3Infrared Microspectroscopy Beamline, Australian Synchrotron, 4School of Science, College of Science, Engineering and Health, RMIT University


JoVE 54309

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Medicine

Non-invasive Optical Measurement of Cerebral Metabolism and Hemodynamics in Infants

1Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 2Lab. PALM, Université de Caen Basse-Normandie, 3Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 4ISS, INC.


JoVE 4379

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Analytical Chemistry

Raman Spectroscopy for Chemical Analysis

JoVE Science Education

Source: Laboratory of Dr. Ryoichi Ishihara — Delft University of Technology

Raman spectroscopy is a technique for analyzing vibrational and other low frequency modes in a system. In chemistry it is used to identify molecules by their Raman fingerprint. In solid-state physics it is used to characterize materials, and more specifically to investigate their crystal structure or crystallinity. Compared to other techniques for investigating the crystal structure (e.g. transmission electron microscope and x-ray diffraction) Raman micro-spectroscopy is non-destructive, generally requires no sample preparation, and can be performed on small sample volumes. For performing Raman spectroscopy a monochromatic laser is shone on a sample. If required the sample can be coated by a transparent layer which is not Raman active (e.g., SiO2) or placed in DI water. The electromagnetic radiation (typically in the near infrared, visible, or near ultraviolet range) emitted from the sample is collected, the laser wavelength is filtered out (e.g., by a notch or bandpass filter), and the resulting light is sent through a monochromator (e.g., a grating) to a CCD detector. Using this, the inelastic scattered light, originating from Raman scattering, can be captured and used to construct the Raman spectrum o

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

Indacenodithienothiophene-Based Ternary Organic Solar Cells: Concept, Devices and Optoelectronic Analysis

1Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, 2Macromolecular Chemistry Group (buwmakro) and Institute for Polymer Technology, Bergische Universität Wuppertal, 3Department of Materials Science Engineering, University of Ioannina, 4Advent Technologies SA, 5National Hellenic Research Foundation (NHRF), 6Bavarian Center for Applied Energy Research (ZAE Bayern)

Video Coming Soon

JoVE 54007

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Engineering

Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films

1Department of Materials Science and Engineering, Clemson University, 2Department of Materials Science and Engineering, Texas A&M University, 3Department of Electrical and Computer Engineering, Texas A&M University, 4College of Optics and Photonics, Center for Research and Education in Optics and Lasers (CREOL), University of Central Florida, 5Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6Department of Mechanical Engineering, Virginia Polytechnic Institute, 7Microphotonics Center, Massachusetts Institute of Technology


JoVE 54379

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Chemistry

Synthesis of Ligand-free CdS Nanoparticles within a Sulfur Copolymer Matrix

1Department of Materials Science and Engineering, University of Washington, 2Molecular Engineering and Sciences Institute, University of Washington, 3Clean Energy Institute, University of Washington, 4Institut für Nanospektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 5Department of Chemical Engineering, University of Washington, 6Department of Chemistry, University of Washington


JoVE 54047

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

The Use of Magnetic Resonance Spectroscopy as a Tool for the Measurement of Bi-hemispheric Transcranial Electric Stimulation Effects on Primary Motor Cortex Metabolism

1Department of Psychology, University of Montréal, 2Montreal Neurological Institute, McGill University, 3Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota


JoVE 51631

12345678917
More Results...
Waiting
simple hit counter