Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Static Electricity: The accumulation of an electric charge on a object
 JoVE Bioengineering

Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-layered In Vitro Model of the Airway Wall

1Division of Drug Delivery and Tissue Engineering, University of Nottingham, 2Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, 3Division of Immunology and Allergy, School of Molecular Medical Sciences, University of Nottingham, 4Division of Respiratory Medicine, School of Clinical Sciences, University of Nottingham, 5NIHR Respiratory Biomedical Research Unit, University of Leicester, 6School of Sport, Exercise, and Health Sciences, Loughborough University


JoVE 52986

 JoVE Immunology and Infection

Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data

1Department of Physics and Randall Division of Cell and Molecular Biophysics, King's College London, 2Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, Division of Immunology, Infection and Inflammatory Disease, King's College London, 3ARC Centre for Advanced Molecular Imaging, Australian Centre for NanoMedicine, University of New South Wales Australia, 4Departments of Chemistry and Physic, McGill University


JoVE 53749

 JoVE Bioengineering

Cell Patterning on Photolithographically Defined Parylene-C: SiO2 Substrates

1Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh, 2Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, 3School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh


JoVE 50929

 JoVE Biology

Bioelectric Analyses of an Osseointegrated Intelligent Implant Design System for Amputees

1Department of Veteran Affairs, 2Department of Bioengineering, University of Utah, 3Scientific Computing and Imaging Institute , University of Utah, 4Department of Physical Medicine and Rehabilitation, University of Utah, 5Department of Orthopaedics, University of Utah


JoVE 1237

Results below contain some, but not all of your search terms.
 Science Education: Essentials of Environmental Science

Proton Exchange Membrane Fuel Cells

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

The United States consumes a large amount of energy – the current rate is around 97.5 quadrillion BTUs annually. The vast majority (90%) of this energy comes from non-renewable fuel sources. This energy is used for electricity (39%), transportation (28%), industry (22%), and residential/commercial use (11%). As the world has a limited supply of these non-renewable sources, the United States (among others) is expanding the use of renewable energy sources to meet future energy needs. One of these sources is hydrogen. Hydrogen is considered a potential renewable fuel source, because it meets many important criteria: it’s available domestically, it has few harmful pollutants, it’s energy efficient, and it’s easy to harness. While hydrogen is the most abundant element in the universe, it is only found in compound form on Earth. For example, it is combined with oxygen in water as H2O. To be useful as a fuel, it needs to be in the form of H2 gas. Therefore, if hydrogen is to be used as a fuel for cars or other electronics, H2 needs to be made first. Thusly, hydrogen is often called an “energy carrier” rather than a “fuel.”

Results below contain some, but not all of your search terms.

 JoVE Bioengineering

Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

1Laboratory for Biomaterials and Bioengineering, Department Min-Met-Materials Eng & CHU de Québec Research Center, Canada Research Chair I for the Innovation in Surgery, Laval University, 2NSERC CREATE Program for Regenerative Medicine (NCPRM), Laval University, 3Department Electronics, Information and Bioengineering, Politecnico di Milano, 4Department of Chemical and Materials Engineering, University of Alberta, 5National Institute for Nanotechnology, National Research Council (Canada), 6Department of Chemical and Biochemical Engineering, University of Western Ontario


JoVE 52812

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Studying Soft-matter and Biological Systems over a Wide Length-scale from Nanometer and Micrometer Sizes at the Small-angle Neutron Diffractometer KWS-2

1Jülich Centre for Neutron Science Outstation at MLZ, Forschungszentrum Jülich GmbH, 2Department of Chemistry, Louisiana State University, 3Jülich Centre for Neutron Science JCNS-1 & Institute of Complex Systems ICS-1, Forschungszentrum Jülich GmbH, 4Central Institute of Engineering, Electronics and Analytics — Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 5Central Institute of Engineering, Electronics and Analytics — Engineering and Technology (ZEA-1), Forschungszentrum Jülich GmbH


JoVE 54639

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Developmental Biology

Large-Scale Production of Cardiomyocytes from Human Pluripotent Stem Cells Using a Highly Reproducible Small Molecule-Based Differentiation Protocol

1Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 2Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, 3St. Vincent´s Clinical School, Faculty of Medicine, University of New South Wales, 4School of Biotechnology and Biomolecular Sciences, University of New South Wales, 5Department of Developmental Biology, University of Science and Culture, 6Heart Centre for Children, The Children´s Hospital at Westmead, 7Sydney Medical School, University of Sydney, 8Department of Developmental Biology, University of Science and Culture, Tehran, Iran


JoVE 54276

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Environment

Measurement of Greenhouse Gas Flux from Agricultural Soils Using Static Chambers

1Office of Sustainability, University of Wisconsin-Madison, 2Department of Soil Science, University of Wisconsin-Madison, 3Department of Agronomy, University of Wisconsin-Madison, 4Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 5USDA-ARS Dairy Forage Research Center, 6USDA-ARS Pasture Systems Watershed Management Research Unit


JoVE 52110

Results below contain some, but not all of your search terms.
 JoVE Bioengineering

A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds

1Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, 2Department of Cardiothoracic Surgery, University Hospital Wuerzburg, 3Department of Bioinformatics, University Wuerzburg, 4Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB


JoVE 53885

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Lab Animal Research

Basic Care Procedures

JoVE Science Education

Source: Kay Stewart, RVT, RLATG, CMAR; Valerie A. Schroeder, RVT, RLATG. University of Notre Dame, IN

Mice and rats account for over 90% of the animals used for biomedical research. The proper care of these research animals is critical to the outcome of experiments. There are general procedures that apply to the majority of these mice and rats, but some of the animals, such as the immunocompromised ones, require additional steps to be taken to sustain them for experimentation. Commonly used immunocompromised mice include those that have naturally occurred in inbred mice and those that have been created through genetic engineering. The first immunocompromised mice used in research were "nude" mice. The BALB/c Nude (nu) mouse was discovered in 1966, within a BALB/c colony that was producing mice lacking both hair and a thymus. These athymic mice have an inhibited immune system that is devoid of T cells. The value of this animal was soon discovered for the use in studies of microbial infections, immune deficiencies, and autoimmunity. Although not as commonly used as the nude mouse, there is also a nude rat. The nude rat is T cell deficient and shows depleted cell populations in thymus-dependent areas of peripheral lymphoid organs. Another naturally occurring immune deficient mouse is the severe comb

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE In-Press

Quantitative Magnetic Resonance Imaging of Skeletal Muscle Disease

1Institute of Imaging Science, Vanderbilt University, 2Department of Radiology and Radiological Sciences, Vanderbilt University, 3Department of Biomedical Engineering, Vanderbilt University, 4Department of Molecular Physiology and Biophysics, Vanderbilt University, 5Department of Physical Medicine and Rehabilitation, Vanderbilt University, 6Department of Physics and Astronomy, Vanderbilt University

Video Coming Soon

JoVE 52352

12345678910
More Results...
Waiting
simple hit counter