Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Templates, Genetic: Macromolecular molds for the synthesis of complementary macromolecules, as in Dna replication; Genetic transcription of DNA to RNA, and Genetic translation of RNA into Polypeptides.
 Science Education: Essentials of Environmental Microbiology

Detecting Environmental Microorganisms with the Polymerase Chain Reaction and Gel Electrophoresis

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Polymerase chain reaction (PCR) is a technique used to detect microorganisms that are present in soil, water, and atmospheric environments. By amplifying specific sections of DNA, PCR can facilitate the detection and identification of target microorganisms down to the species, strain, and serovar/pathovar level. The technique can also be utilized to characterize entire communities of microorganisms in samples. The culturing of microorganisms in the laboratory using specialized growth media is a long-established technique and remains in use for the detection of microorganisms in environmental samples. Many microbes in the natural environment, while alive, maintain low levels of metabolic activity and/or doubling times and are thus referred to as viable but non-culturable (VBNC) organisms. The use of culture-based techniques alone cannot detect these microbes and, therefore, does not provide a thorough assessment of microbial populations in samples. The use of PCR allows for the detection of culturable microbes, VBNC organisms, and those that are no longer alive or active, as the amplification of genetic sequences does not generally require the pre-enrichment of microorga

 JoVE Biology

Chitosan/Interfering RNA Nanoparticle Mediated Gene Silencing in Disease Vector Mosquito Larvae

1Division of Biology, Kansas State University, 2Department of Medical and Molecular Genetics, Indiana University School of Medicine, 3Eck Institute for Global Health, University of Notre Dame, 4Department of Biological Sciences, University of Notre Dame, 5Department of Entomology, Kansas State University


JoVE 52523

 JoVE Biology

Employing Digital Droplet PCR to Detect BRAF V600E Mutations in Formalin-fixed Paraffin-embedded Reference Standard Cell Lines

1Research Institute of Pharmaceutical Science, Department of Pharmacy, College of Pharmacy, Seoul National University, 2The Center for Anti-Cancer CDx, N-Bio, Seoul National University, 3ABION CRO, 4ABION Inc., R&D Center


JoVE 53190

 JoVE Biology

Protocols for Implementing an Escherichia coli Based TX-TL Cell-Free Expression System for Synthetic Biology

1Department of Biology, California Institute of Technology, 2Department of Bioengineering, California Institute of Technology, 3Synthetic Biology Center, Department of Bioengineering, Massachusetts Institute of Technology, 4School of Physics and Astronomy, University of Minnesota


JoVE 50762

 Science Education: Essentials of Environmental Science

Testing For Genetically Modified Foods

JoVE Science Education

Source: Laboratories of Margaret Workman and Kimberly Frye - Depaul University

Genetic modification of foods has been a controversial issue due to debated concerns over health and environmental safety. This experiment demonstrates technical understanding of how food DNA is genetically identified, allowing for educated decision making about the safety and potential dangers of using genetically modified organisms (GMOs) in food supplies. Polymerase Chain Reaction (PCR) is used to amplify food DNA to test for the presence of genetically modified DNA in food products. Presence of specific DNA bands is detected by using gel electrophoresis to pull extracted food DNA through a 3% agarose gel, a concentration dense enough to separate the bands of DNA containing the genetically modified DNA. Several controls are used in the electrophoresis procedure to ensure DNA is successfully extracted from test foods (plant primer), and to provide known examples of both genetically modified DNA (purchased genetically modified DNA) and non-genetically modified DNA (purchased certified non-GMO food control).

 JoVE Immunology and Infection

Methods to Increase the Sensitivity of High Resolution Melting Single Nucleotide Polymorphism Genotyping in Malaria

1Department of Organismic and Evolutionary Biology, Harvard University, 2Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 3Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, 4School of Nursing and Health Sciences, Simmons College, 5Institute of Infectious Diseases, Broad Institute


JoVE 52839

 JoVE Developmental Biology

Using Confocal Analysis of Xenopus laevis to Investigate Modulators of Wnt and Shh Morphogen Gradients

1Department of Biomedical Science, The Bateson Centre, University of Sheffield, 2Institute of Genetic Medicine, Newcastle University, 3Department of Cardiovascular Science, The Bateson Centre, University of Sheffield, 4School of Biochemistry, University of Bristol, 5Biology Department, University of York


JoVE 53162

 Science Education: Essentials of Environmental Microbiology

RNA Analysis of Environmental Samples Using RT-PCR

JoVE Science Education

Source: Laboratories of Dr. Ian Pepper and Dr. Charles Gerba - Arizona University
Demonstrating Author: Bradley Schmitz

Reverse transcription-polymerase chain reaction (RT-PCR) involves the same process as conventional PCR — cycling temperature to amplify nucleic acids. However, while conventional PCR only amplifies deoxyribonucleic acids (DNA), RT-PCR enables the amplification of ribonucleic acids (RNA) through the formation of complementary DNA (cDNA). This enables RNA-based organisms found within the environment to be analyzed utilizing methods and technologies that are designed for DNA. Many viruses found in the environment use RNA as their genetic material. Several RNA-based viral pathogens, such as Norovirus, and indicator organisms, such as pepper mild mottle virus (PMMoV), do not have culture-based detection methods for quantification. In order to detect for the presence of these RNA viruses in environmental samples from soil, water, agriculture, etc., molecular assays rely on RT-PCR to convert RNA into DNA. Without RT-PCR, microbiologists would not be able to assay and research numerous RNA-based viruses that pose risks to human and environmental health. RT-PCR can also be employed as a tool to measure microbial activity in the env

12345678936
More Results...
Waiting
simple hit counter