Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Temporal Muscle: A masticatory muscle whose action is closing the jaws; its posterior portion retracts the mandible.
 JoVE Biology

High Efficiency Differentiation of Human Pluripotent Stem Cells to Cardiomyocytes and Characterization by Flow Cytometry

1Department of Biochemistry, Medical College of Wisconsin, 2Stanford Cardiovascular Institute, Stanford University School of Medicine, 3Department of Anesthesiology, Medical College of Wisconsin, 4Stem Cell and Regenerative Medicine Consortium, LKS Faculty of Medicine, Hong Kong University, 5Division of Cardiology, Johns Hopkins University School of Medicine, 6Cardiovascular Research Center, Biotechnology and Bioengineering Center, Medical College of Wisconsin


JoVE 52010

 JoVE Developmental Biology

Isolation and Characterization of Satellite Cells from Rat Head Branchiomeric Muscles

1Department of Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 2Department of Biological Structure, University of Washington School of Medicine, 3Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center


JoVE 52802

 JoVE Medicine

A Multimodal Imaging- and Stimulation-based Method of Evaluating Connectivity-related Brain Excitability in Patients with Epilepsy

1Department of Neurology, Harvard Medical School, 2Department of Neurology, Beth Israel Deaconess Medical Center, 3Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 4Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 5Department of Neurology, Massachusetts General Hospital


JoVE 53727

 JoVE In-Press

Combined Intravital Microscopy and Contrast-enhanced Ultrasonography of the Mouse Hindlimb to Study Insulin-induced Vasodilation and Muscle Perfusion

1Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), VU Medical Center, 2Department of Internal Medicine, Institute for Cardiovascular Research (ICaR-VU), VU Medical Center

Video Coming Soon

JoVE 54912

 JoVE Medicine

Calcification of Vascular Smooth Muscle Cells and Imaging of Aortic Calcification and Inflammation

1Anesthesia Center for Critical Care Research of the Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, 2Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital, 3Cardiovascular Division, Brigham and Women's Hospital, 4Harvard Medical School, 5Department of Anesthesiology, Uniklinik RWTH Aachen, RWTH Aachen University, 6Center for Immunology and Inflammatory Diseases and the Division of Rheumatology, Allergy, and Immunology of the Department of Medicine, Massachusetts General Hospital


JoVE 54017

 JoVE Biology

Implementation of a Coherent Anti-Stokes Raman Scattering (CARS) System on a Ti:Sapphire and OPO Laser Based Standard Laser Scanning Microscope

1INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, 2Université de Nîmes, 3CNRS, IES, UMR 5214, 4Aix-Marseille Université, CNRS, École Centrale Marseille, Institut Fresnel, UMR 7249, 5Montpellier RIO Imaging (MRI)


JoVE 54262

 JoVE In-Press

Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy

1Fetal-Neonatal Neuroimaging and Developmental Science Center, Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, 2Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 3Division of Epilepsy Surgery, Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, 4Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School

Video Coming Soon

JoVE 54883

 JoVE Biology

Assessment of Calcium Sparks in Intact Skeletal Muscle Fibers

1Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 2Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, 3Department of Molecular Biophysics and Physiology, Rush University Medical Center, 4Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center


JoVE 50898

 JoVE Behavior

Conscious and Non-conscious Representations of Emotional Faces in Asperger's Syndrome

1Institute of Statistical Science, Academia Sinica, 2Max Planck Institute for Human Cognitive and Brain Sciences, 3Department of Psychology, Fo Guang University, 4Department of Electrical Engineering, Fu Jen Catholic University, 5State Research Institute of Physiology and Basic Medicine, 6Novosibirsk State University, 7Imaging Research Center, Taipei Medical University


JoVE 53962

 Science Education: Essentials of Neuropsychology

Using TMS to Measure Motor Excitability During Action Observation

JoVE Science Education

Source: Laboratories of Jonas T. Kaplan and Sarah I. Gimbel—University of Southern California

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that involves passing current through an insulated coil placed against the scalp. A brief magnetic field is created by current in the coil, and because of the physical process of induction, this leads to a current in the nearby neural tissue. Depending on the duration, frequency, and magnitude of these magnetic pulses, the underlying neural circuitry can be affected in many different ways. Here, we demonstrate the technique of single-pulse TMS, in which one brief magnetic pulse is used to stimulate the neocortex. One observable effect of TMS is that it can produce muscle twitches when applied over the motor cortex. Due to the somatotopic organization of the motor cortex, different muscles can be targeted depending on the precise placement of the coil. The electrical signals that cause these muscle twitches, called motor evoked potentials, or MEPs, can be recorded and quantified by electrodes placed on the skin over the targeted muscle. The amplitude of MEPs can be interpreted to reflect the underlying excitability of the motor cortex; for example, when the motor cortex is activated, observed MEPs are larger.

 JoVE In-Press

Network Analysis of Foramen Ovale Electrode Recordings in Drug-resistant Temporal Lobe Epilepsy Patients

1Neurosurgery & National Reference Unit for the Treatment of Refractory Epilepsy, Instituto de Investigación Sanitaria Hospital de la Princesa, 2Clinical Neurophysiology & National Reference Unit for the Treatment of Refractory Epilepsy, Instituto de Investigación Sanitaria Hospital de la Princesa, 3CONICET

Video Coming Soon

JoVE 54746

 JoVE In-Press

Hyperpolarized 13C Metabolic Magnetic Resonance Spectroscopy and Imaging

1Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, 2Department of Chemistry, Technische Universität München, 3GE Global Research, 4Zentralinstitut für Medizintechnik der Technischen Universität München (IMETUM), Technische Universität München, 5Institute for Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, 6IDG Institute of Developmental Genetics, Helmholtz Zentrum München

Video Coming Soon

JoVE 54751

 JoVE Developmental Biology

Imaging Subcellular Structures in the Living Zebrafish Embryo

1Institute of Neuronal Cell Biology, Technische Universität München, 2Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3Faculty of Biology, Ludwig-Maximilians-Universität-München, 4Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-Universität-München, 5German Center for Neurodegenerative Diseases, 6Laboratory of Brain Development and Repair, The Rockefeller University


JoVE 53456

 JoVE Medicine

Development of an Algorithm to Perform a Comprehensive Study of Autonomic Dysreflexia in Animals with High Spinal Cord Injury Using a Telemetry Device

1International Collaboration on Repair Discoveries (ICORD), Faculty of Medicine, University of British Columbia, 2Department of Medicine, Division of Physical Medicine and Rehabilitation, University of British Columbia, GF Strong Rehabilitation Centre


JoVE 52809

12345678942
More Results...
Waiting
simple hit counter