JoVE

Refine your search:

Containing Text
- - -
+
Filter by author or institution
GO
Filter by publication date
From:
October, 2006
Until:
Today
Filter by section
 
 
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Neuroscience

Consensus Brain-derived Protein, Extraction Protocol for the Study of Human and Murine Brain Proteome Using Both 2D-DIGE and Mini 2DE Immunoblotting

1Team Alzheimer & Tauopathies, Jean-Pierre Aubert Research Centre, Inserm UMR 837, 2EA 4308-Department of Reproductive Biology-Spermiology-CECOS, CHRU-Lille, 3EA2686-Laboratorie d'Immunologie, Faculté de Médecine - Pôle Recherche, 4Department of Neurology, CHRU-Lille


JoVE 51339

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Biology

3D Printing of Preclinical X-ray Computed Tomographic Data Sets

1Department of Chemistry and Biochemistry, University of Notre Dame, 2Freimann Life Science Center, University of Notre Dame, 3Department of Biological Sciences, University of Notre Dame, 4Notre Dame Integrated Imaging Facility, University of Notre Dame, 5MakerBot Industries LLC, 6Departments of Biological Sciences, Aerospace and Mechanical Engineering, and Anthropology, University of Notre Dame, 7Harper Cancer Research Institute, University of Notre Dame


JoVE 50250

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Preparation of 3D Collagen Gels and Microchannels for the Study of 3D Interactions In Vivo

1Department of Cell and Regenerative Biology, University of Wisconsin-Madison, 2Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, 3Department of Biomedical Engineering, University of Wisconsin-Madison, 4Morgridge Institute for Research, University of Wisconsin-Madison, 5Paul P. Carbone Comprehensive Cancer center, University of Wisconsin-Madison


JoVE 53989

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

From Voxels to Knowledge: A Practical Guide to the Segmentation of Complex Electron Microscopy 3D-Data

1Life Sciences Division, Lawrence Berkeley National Laboratory, 2Joint Bioenergy Institute, Physical Biosciences Division, Lawrence Berkeley National Laboratory, 3National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory


JoVE 51673

Results below contain some, but not all of your search terms.
 JoVE Bioengineering

A Combined 3D Tissue Engineered In Vitro/In Silico Lung Tumor Model for Predicting Drug Effectiveness in Specific Mutational Backgrounds

1Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, 2Department of Cardiothoracic Surgery, University Hospital Wuerzburg, 3Department of Bioinformatics, University Wuerzburg, 4Translational Center Wuerzburg, Fraunhofer Institute Interfacial Engineering and Biotechnology IGB


JoVE 53885

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 Science Education: Essentials of Developmental Psychology

Executive Function and the Dimensional Change Card Sort Task

JoVE Science Education

Source: Laboratories of Nicholaus Noles and Judith Danovitch—University of Louisville

Infants are born with amazing cognitive resources at their disposal, but they don’t know how to use them effectively. In order to harness the power of their brains, humans must develop high-level cognitive processes that manage basic brain functions. These processes make up what psychologists refer to as executive function. Executive function is a key factor in many self-regulatory behaviors, including forming plans to solve problems, negotiating between desires and actions, and directing attention. For example, a child must use several executive processes to stop playing with toys and start cleaning their room. These processes include inhibition (to stop what they’re doing), planning (to determine what actions need to be performed to clean the room), and attentional control (to stay on task until the cleaning is done). A breakdown of executive function during any of these steps would lead to the room remaining dirty. Developing executive function is one of the key challenges faced by children as they mature. Some elements of executive function can only be mastered with practice, and brain areas linked to executive function, specifically the prefrontal cortex, develop slowly throughout

Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
Results below contain some, but not all of your search terms.
 JoVE Bioengineering

Fluorescence Biomembrane Force Probe: Concurrent Quantitation of Receptor-ligand Kinetics and Binding-induced Intracellular Signaling on a Single Cell

1Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 2Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 3Charles Perkins Centre, The University of Sydney, 4Institute of Biophysics, Laboratory of RNA Biology, Chinese Academy of Sciences, 5University of Chinese Academy of Sciences, 6School of Medicine and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University


JoVE 52975

12345678920
More Results...
Waiting
simple hit counter