JoVE   
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Biology

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Neuroscience

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Immunology and Infection

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Clinical and Translational Medicine

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Bioengineering

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Applied Physics

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Chemistry

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Behavior

  
You do not have subscription access to articles in this section. Learn more about access.

  JoVE Environment

|   

JoVE Science Education

General Laboratory Techniques

You do not have subscription access to videos in this collection. Learn more about access.

Basic Methods in Cellular and Molecular Biology

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms I

You do not have subscription access to videos in this collection. Learn more about access.

Model Organisms II

You do not have subscription access to videos in this collection. Learn more about access.

Essentials of
Neuroscience

You do not have subscription access to videos in this collection. Learn more about access.

 JoVE Biology

Principles of Site-Specific Recombinase (SSR) Technology

1

1Max Plank Institute for Molecular Cell Biology and Genetics, Dresden

Article
    Downloads Comments Metrics

    You must be subscribed to JoVE to access this content.

    This article is a part of   JoVE Biology. If you think this article would be useful for your research, please recommend JoVE to your institution's librarian.

    Recommend JoVE to Your Librarian

    Current Access Through Your IP Address

    You do not have access to any JoVE content through your current IP address.

    IP: 54.82.190.130, User IP: 54.82.190.130, User IP Hex: 911392386

    Current Access Through Your Registered Email Address

    You aren't signed into JoVE. If your institution subscribes to JoVE, please or create an account with your institutional email address to access this content.

     

    Summary

    The advent of site-specific recombinase (SSR) technology and the Cre/lox system has led to numerous advances in molecular biology, and has proven itself as a valuable tool for assessing gene function in transgenic animals. This interview discusses the mechanism of site specific recombination by Cyclization recombinase (Cre) and how the use of this enzyme has led to the development of conditional mutagenesis, which has significant advantages over traditional knock out strategies.

    Date Published: 5/29/2008, Issue 15; doi: 10.3791/718

    Cite this Article

    Bucholtz, F. Principles of Site-Specific Recombinase (SSR) Technology. J. Vis. Exp. (15), e718, doi:10.3791/718 (2008).

    Abstract

    Site-specific recombinase (SSR) technology allows the manipulation of gene structure to explore gene function and has become an integral tool of molecular biology. Site-specific recombinases are proteins that bind to distinct DNA target sequences. The Cre/lox system was first described in bacteriophages during the 1980's. Cre recombinase is a Type I topoisomerase that catalyzes site-specific recombination of DNA between two loxP (locus of X-over P1) sites. The Cre/lox system does not require any cofactors. LoxP sequences contain distinct binding sites for Cre recombinases that surround a directional core sequence where recombination and rearrangement takes place. When cells contain loxP sites and express the Cre recombinase, a recombination event occurs. Double-stranded DNA is cut at both loxP sites by the Cre recombinase, rearranged, and ligated ("scissors and glue"). Products of the recombination event depend on the relative orientation of the asymmetric sequences.

    SSR technology is frequently used as a tool to explore gene function. Here the gene of interest is flanked with Cre target sites loxP ("floxed"). Animals are then crossed with animals expressing the Cre recombinase under the control of a tissue-specific promoter. In tissues that express the Cre recombinase it binds to target sequences and excises the floxed gene. Controlled gene deletion allows the investigation of gene function in specific tissues and at distinct time points. Analysis of gene function employing SSR technology --- conditional mutagenesis -- has significant advantages over traditional knock-outs where gene deletion is frequently lethal.

    Disclosures

    Comments

    3 Comments

    Hi. The presentation was good and substantial. It would much good if the delicate concepts of selection are also included. Thank you. Cheers, Lopez Gilsinia Gilroy
    Reply

    Posted by: AnonymousMay 31, 2008, 5:54 AM

    request for article
    Reply

    Posted by: AnonymousJanuary 13, 2010, 7:59 AM

    request for the articel
    Reply

    Posted by: AnonymousJuly 8, 2010, 4:52 PM

    Post a Question / Comment / Request

    You must be signed in to post a comment. Please or create an account.

    Metrics

    Waiting
    simple hit counter