JoVE Visualize What is visualize?
Related JoVE Video
Pubmed Article
Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia.
PUBLISHED: 01-22-2009
Friedreich ataxia originates from a decrease in mitochondrial frataxin, which causes the death of a subset of neurons. The biochemical hallmarks of the disease include low activity of the iron sulfur cluster-containing proteins (ISP) and impairment of antioxidant defense mechanisms that may play a major role in disease progression.
Authors: Peter-Leon Hagedoorn, Laura van der Weel, Wilfred R. Hagen.
Published: 11-26-2014
Electron Paramagnetic Resonance (EPR) monitored redox titrations are a powerful method to determine the midpoint potential of cofactors in proteins and to identify and quantify the cofactors in their detectable redox state. The technique is complementary to direct electrochemistry (voltammetry) approaches, as it does not offer information on electron transfer rates, but does establish the identity and redox state of the cofactors in the protein under study. The technique is widely applicable to any protein containing an electron paramagnetic resonance (EPR) detectable cofactor. A typical titration requires 2 ml protein with a cofactor concentration in the range of 1-100 µM. The protein is titrated with a chemical reductant (sodium dithionite) or oxidant (potassium ferricyanide) in order to poise the sample at a certain potential. A platinum wire and a Ag/AgCl reference electrode are connected to a voltmeter to measure the potential of the protein solution. A set of 13 different redox mediators is used to equilibrate between the redox cofactors of the protein and the electrodes. Samples are drawn at different potentials and the Electron Paramagnetic Resonance spectra, characteristic for the different redox cofactors in the protein, are measured. The plot of the signal intensity versus the sample potential is analyzed using the Nernst equation in order to determine the midpoint potential of the cofactor.
25 Related JoVE Articles!
Play Button
F1FO ATPase Vesicle Preparation and Technique for Performing Patch Clamp Recordings of Submitochondrial Vesicle Membranes
Authors: Silvio Sacchetti, Kambiz N. Alavian, Emma Lazrove, Elizabeth A. Jonas.
Institutions: Yale University.
Mitochondria are involved in many important cellular functions including metabolism, survival1, development and, calcium signaling2. Two of the most important mitochondrial functions are related to the efficient production of ATP, the energy currency of the cell, by oxidative phosphorylation, and the mediation of signals for programmed cell death3. The enzyme primarily responsible for the production of ATP is the F1FO-ATP synthase, also called ATP synthase4-5. In recent years, the role of mitochondria in apoptotic and necrotic cell death has received considerable attention. In apoptotic cell death, BCL-2 family proteins such as Bax enter the mitochondrial outer membrane, oligomerize and permeabilize the outer membrane, releasing pro-apoptotic factors into the cytosol6. In classic necrotic cell death, such as that produced by ischemia or excitotoxicity in neurons, a large, poorly regulated increase in matrix calcium contributes to the opening of an inner membrane pore, the mitochondrial permeability transition pore or mPTP. This depolarizes the inner membrane and causes osmotic shifts, contributing to outer membrane rupture, release of pro-apoptotic factors, and metabolic dysfunction. Many proteins including Bcl-xL7 interact with F1FO ATP synthase, modulating its function. Bcl-xL interacts directly with the beta subunit of F1FO ATP synthase, and this interaction decreases a leak conductance within the F1FOATPasecomplex, increasing the net transport of H+ by F1FO during F1FO ATPase activity8 and thereby increasing mitochondrial efficiency. To study the activity and modulation of the ATP synthase, we isolated from rodent brain submitochondrial vesicles (SMVs) containing F1FO ATPase. The SMVs retain the structural and functional integrity of the F1FO ATPase as shown in Alavian et al. Here, we describe a method that we have used successfully for the isolation of SMVs from rat brain and we delineate the patch clamp technique to analyze channel activity (ion leak conductance) of the SMVs.
Neuroscience, Issue 75, Medicine, Biomedical Engineering, Molecular Biology, Cellular Biology, Biochemistry, Neurobiology, Anatomy, Physiology, F1FO ATPase, mitochondria, patch clamp, electrophysiology, submitochondrial vesicles, Bcl-xL, cells, rat, animal model
Play Button
Determination of Mitochondrial Membrane Potential and Reactive Oxygen Species in Live Rat Cortical Neurons
Authors: Dinesh C. Joshi, Joanna C. Bakowska.
Institutions: Loyola University Chicago.
Mitochondrial membrane potential (ΔΨm) is critical for maintaining the physiological function of the respiratory chain to generate ATP. A significant loss of ΔΨm renders cells depleted of energy with subsequent death. Reactive oxygen species (ROS) are important signaling molecules, but their accumulation in pathological conditions leads to oxidative stress. The two major sources of ROS in cells are environmental toxins and the process of oxidative phosphorylation. Mitochondrial dysfunction and oxidative stress have been implicated in the pathophysiology of many diseases; therefore, the ability to determine ΔΨm and ROS can provide important clues about the physiological status of the cell and the function of the mitochondria. Several fluorescent probes (Rhodamine 123, TMRM, TMRE, JC-1) can be used to determine Δψm in a variety of cell types, and many fluorescence indicators (Dihydroethidium, Dihydrorhodamine 123, H2DCF-DA) can be used to determine ROS. Nearly all of the available fluorescence probes used to assess ΔΨm or ROS are single-wavelength indicators, which increase or decrease their fluorescence intensity proportional to a stimulus that increases or decreases the levels of ΔΨm or ROS. Thus, it is imperative to measure the fluorescence intensity of these probes at the baseline level and after the application of a specific stimulus. This allows one to determine the percentage of change in fluorescence intensity between the baseline level and a stimulus. This change in fluorescence intensity reflects the change in relative levels of ΔΨm or ROS. In this video, we demonstrate how to apply the fluorescence indicator, TMRM, in rat cortical neurons to determine the percentage change in TMRM fluorescence intensity between the baseline level and after applying FCCP, a mitochondrial uncoupler. The lower levels of TMRM fluorescence resulting from FCCP treatment reflect the depolarization of mitochondrial membrane potential. We also show how to apply the fluorescence probe H2DCF-DA to assess the level of ROS in cortical neurons, first at baseline and then after application of H2O2. This protocol (with minor modifications) can be also used to determine changes in ∆Ψm and ROS in different cell types and in neurons isolated from other brain regions.
Neuroscience, Issue 51, Mitochondrial membrane potential, reactive oxygen species, neuroscience, cortical neurons
Play Button
A Faster, High Resolution, mtPA-GFP-based Mitochondrial Fusion Assay Acquiring Kinetic Data of Multiple Cells in Parallel Using Confocal Microscopy
Authors: Alenka Lovy, Anthony J.A. Molina, Fernanda M. Cerqueira, Kyle Trudeau, Orian S. Shirihai.
Institutions: Tufts School of Medicine, Wake Forest Baptist Medical Center, Boston University Medical Center.
Mitochondrial fusion plays an essential role in mitochondrial calcium homeostasis, bioenergetics, autophagy and quality control. Fusion is quantified in living cells by photo-conversion of matrix targeted photoactivatable GFP (mtPAGFP) in a subset of mitochondria. The rate at which the photoconverted molecules equilibrate across the entire mitochondrial population is used as a measure of fusion activity. Thus far measurements were performed using a single cell time lapse approach, quantifying the equilibration in one cell over an hour. Here, we scale up and automate a previously published live cell method based on using mtPAGFP and a low concentration of TMRE (15 nm). This method involves photoactivating a small portion of the mitochondrial network, collecting highly resolved stacks of confocal sections every 15 min for 1 hour, and quantifying the change in signal intensity. Depending on several factors such as ease of finding PAGFP expressing cells, and the signal of the photoactivated regions, it is possible to collect around 10 cells within the 15 min intervals. This provides a significant improvement in the time efficiency of this assay while maintaining the highly resolved subcellular quantification as well as the kinetic parameters necessary to capture the detail of mitochondrial behavior in its native cytoarchitectural environment. Mitochondrial dynamics play a role in many cellular processes including respiration, calcium regulation, and apoptosis1,2,3,13. The structure of the mitochondrial network affects the function of mitochondria, and the way they interact with the rest of the cell. Undergoing constant division and fusion, mitochondrial networks attain various shapes ranging from highly fused networks, to being more fragmented. Interestingly, Alzheimer's disease, Parkinson's disease, Charcot Marie Tooth 2A, and dominant optic atrophy have been correlated with altered mitochondrial morphology, namely fragmented networks4,10,13. Often times, upon fragmentation, mitochondria become depolarized, and upon accumulation this leads to impaired cell function18. Mitochondrial fission has been shown to signal a cell to progress toward apoptosis. It can also provide a mechanism by which to separate depolarized and inactive mitochondria to keep the bulk of the network robust14. Fusion of mitochondria, on the other hand, leads to sharing of matrix proteins, solutes, mtDNA and the electrochemical gradient, and also seems to prevent progression to apoptosis9. How fission and fusion of mitochondria affects cell homeostasis and ultimately the functioning of the organism needs further understanding, and therefore the continuous development and optimization of how to gather information on these phenomena is necessary. Existing mitochondrial fusion assays have revealed various insights into mitochondrial physiology, each having its own advantages. The hybrid PEG fusion assay7, mixes two populations of differently labeled cells (mtRFP and mtYFP), and analyzes the amount of mixing and colocalization of fluorophores in fused, multinucleated, cells. Although this method has yielded valuable information, not all cell types can fuse, and the conditions under which fusion is stimulated involves the use of toxic drugs that likely affect the normal fusion process. More recently, a cell free technique has been devised, using isolated mitochondria to observe fusion events based on a luciferase assay1,5. Two human cell lines are targeted with either the amino or a carboxy terminal part of Renilla luciferase along with a leucine zipper to ensure dimerization upon mixing. Mitochondria are isolated from each cell line, and fused. The fusion reaction can occur without the cytosol under physiological conditions in the presence of energy, appropriate temperature and inner mitochondrial membrane potential. Interestingly, the cytosol was found to modulate the extent of fusion, demonstrating that cell signaling regulates the fusion process 4,5. This assay will be very useful for high throughput screening to identify components of the fusion machinery and also pharmacological compounds that may affect mitochondrial dynamics. However, more detailed whole cell mitochondrial assays will be needed to complement this in vitro assay to observe these events within a cellular environment. A technique for monitoring whole-cell mitochondrial dynamics has been in use for some time and is based on a mitochondrially-targeted photoactivatable GFP (mtPAGFP)6,11. Upon expression of the mtPAGFP, a small portion of the mitochondrial network is photoactivated (10-20%), and the spread of the signal to the rest of the mitochondrial network is recorded every 15 minutes for 1 hour using time lapse confocal imaging. Each fusion event leads to a dilution of signal intensity, enabling quantification of the fusion rate. Although fusion and fission are continuously occurring in cells, this technique only monitors fusion as fission does not lead to a dilution of the PAGFP signal6. Co-labeling with low levels of TMRE (7-15 nM in INS1 cells) allows quantification of the membrane potential of mitochondria. When mitochondria are hyperpolarized they uptake more TMRE, and when they depolarize they lose the TMRE dye. Mitochondria that depolarize no longer have a sufficient membrane potential and tend not to fuse as efficiently if at all. Therefore, active fusing mitochondria can be tracked with these low levels of TMRE9,15. Accumulation of depolarized mitochondria that lack a TMRE signal may be a sign of phototoxicity or cell death. Higher concentrations of TMRE render mitochondria very sensitive to laser light, and therefore great care must be taken to avoid overlabeling with TMRE. If the effect of depolarization of mitochondria is the topic of interest, a technique using slightly higher levels of TMRE and more intense laser light can be used to depolarize mitochondria in a controlled fashion (Mitra and Lippincott-Schwartz, 2010). To ensure that toxicity due to TMRE is not an issue, we suggest exposing loaded cells (3-15 nM TMRE) to the imaging parameters that will be used in the assay (perhaps 7 stacks of 6 optical sections in a row), and assessing cell health after 2 hours. If the mitochondria appear too fragmented and cells are dying, other mitochondrial markers, such as dsRED or Mitotracker red could be used instead of TMRE. The mtPAGFP method has revealed details about mitochondrial network behavior that could not be visualized using other methods. For example, we now know that mitochondrial fusion can be full or transient, where matrix content can mix without changing the overall network morphology. Additionally, we know that the probability of fusion is independent of contact duration and organelle dimension, is influenced by organelle motility, membrane potential and history of previous fusion activity8,15,16,17. In this manuscript, we describe a methodology for scaling up the previously published protocol using mtPAGFP and 15nM TMRE8 in order to examine multiple cells at a time and improve the time efficiency of data collection without sacrificing the subcellular resolution. This has been made possible by the use of an automated microscope stage, and programmable image acquisition software. Zen software from Zeiss allows the user to mark and track several designated cells expressing mtPAGFP. Each of these cells can be photoactivated in a particular region of interest, and stacks of confocal slices can be monitored for mtPAGFP signal as well as TMRE at specified intervals. Other confocal systems could be used to perform this protocol provided there is an automated stage that is programmable, an incubator with CO2, and a means by which to photoactivate the PAGFP; either a multiphoton laser, or a 405 nm diode laser.
Molecular Biology, Issue 65, Genetics, Cellular Biology, Physics, confocal microscopy, mitochondria, fusion, TMRE, mtPAGFP, INS1, mitochondrial dynamics, mitochondrial morphology, mitochondrial network
Play Button
Assessment of Vascular Function in Patients With Chronic Kidney Disease
Authors: Kristen L. Jablonski, Emily Decker, Loni Perrenoud, Jessica Kendrick, Michel Chonchol, Douglas R. Seals, Diana Jalal.
Institutions: University of Colorado, Denver, University of Colorado, Boulder.
Patients with chronic kidney disease (CKD) have significantly increased risk of cardiovascular disease (CVD) compared to the general population, and this is only partially explained by traditional CVD risk factors. Vascular dysfunction is an important non-traditional risk factor, characterized by vascular endothelial dysfunction (most commonly assessed as impaired endothelium-dependent dilation [EDD]) and stiffening of the large elastic arteries. While various techniques exist to assess EDD and large elastic artery stiffness, the most commonly used are brachial artery flow-mediated dilation (FMDBA) and aortic pulse-wave velocity (aPWV), respectively. Both of these noninvasive measures of vascular dysfunction are independent predictors of future cardiovascular events in patients with and without kidney disease. Patients with CKD demonstrate both impaired FMDBA, and increased aPWV. While the exact mechanisms by which vascular dysfunction develops in CKD are incompletely understood, increased oxidative stress and a subsequent reduction in nitric oxide (NO) bioavailability are important contributors. Cellular changes in oxidative stress can be assessed by collecting vascular endothelial cells from the antecubital vein and measuring protein expression of markers of oxidative stress using immunofluorescence. We provide here a discussion of these methods to measure FMDBA, aPWV, and vascular endothelial cell protein expression.
Medicine, Issue 88, chronic kidney disease, endothelial cells, flow-mediated dilation, immunofluorescence, oxidative stress, pulse-wave velocity
Play Button
High-throughput Screening and Biosensing with Fluorescent C. elegans Strains
Authors: Chi K. Leung, Andrew Deonarine, Kevin Strange, Keith P. Choe.
Institutions: University of Florida, Mount Desert Island Biological Laboratory.
High-throughput screening (HTS) is a powerful approach for identifying chemical modulators of biological processes. However, many compounds identified in screens using cell culture models are often found to be toxic or pharmacologically inactive in vivo1-2. Screening in whole animal models can help avoid these pitfalls and streamline the path to drug development. C. elegans is a multicellular model organism well suited for HTS. It is small (<1 mm) and can be economically cultured and dispensed in liquids. C. elegans is also one of the most experimentally tractable animal models permitting rapid and detailed identification of drug mode-of-action3. We describe a protocol for culturing and dispensing fluorescent strains of C. elegans for high-throughput screening of chemical libraries or detection of environmental contaminants that alter the expression of a specific gene. Large numbers of developmentally synchronized worms are grown in liquid culture, harvested, washed, and suspended at a defined density. Worms are then added to black, flat-bottomed 384-well plates using a peristaltic liquid dispenser. Small molecules from a chemical library or test samples (e.g., water, food, or soil) can be added to wells with worms. In vivo, real-time fluorescence intensity is measured with a fluorescence microplate reader. This method can be adapted to any inducible gene in C. elegans for which a suitable reporter is available. Many inducible stress and developmental transcriptional pathways are well defined in C. elegans and GFP transgenic reporter strains already exist for many of them4. When combined with the appropriate transgenic reporters, our method can be used to screen for pathway modulators or to develop robust biosensor assays for environmental contaminants. We demonstrate our C. elegans culture and dispensing protocol with an HTS assay we developed to monitor the C. elegans cap ‘n’ collar transcription factor SKN-1. SKN-1 and its mammalian homologue Nrf2 activate cytoprotective genes during oxidative and xenobiotic stress5-10. Nrf2 protects mammals from numerous age-related disorders such as cancer, neurodegeneration, and chronic inflammation and has become a major chemotherapeutic target11-13.Our assay is based on a GFP transgenic reporter for the SKN-1 target gene gst-414, which encodes a glutathione-s transferase6. The gst-4 reporter is also a biosensor for xenobiotic and oxidative chemicals that activate SKN-1 and can be used to detect low levels of contaminants such as acrylamide and methyl-mercury15-16.
Neuroscience, Issue 51, High-Throughput screening, C. elegans, biosensor, drug discovery, Nrf2, small molecule, oxidant
Play Button
Measuring Spatial and Temporal Ca2+ Signals in Arabidopsis Plants
Authors: Xiaohong Zhu, Aaron Taylor, Shenyu Zhang, Dayong Zhang, Ying Feng, Gaimei Liang, Jian-Kang Zhu.
Institutions: Purdue University, Purdue University, Jiangsu Academy of Agricultural Sciences, Zhejiang University, Shanxi Academy of Agricultural Sciences, Chinese Academy of Sciences.
Developmental and environmental cues induce Ca2+ fluctuations in plant cells. Stimulus-specific spatial-temporal Ca2+ patterns are sensed by cellular Ca2+ binding proteins that initiate Ca2+ signaling cascades. However, we still know little about how stimulus specific Ca2+ signals are generated. The specificity of a Ca2+ signal may be attributed to the sophisticated regulation of the activities of Ca2+ channels and/or transporters in response to a given stimulus. To identify these cellular components and understand their functions, it is crucial to use systems that allow a sensitive and robust recording of Ca2+ signals at both the tissue and cellular levels. Genetically encoded Ca2+ indicators that are targeted to different cellular compartments have provided a platform for live cell confocal imaging of cellular Ca2+ signals. Here we describe instructions for the use of two Ca2+ detection systems: aequorin based FAS (film adhesive seedlings) luminescence Ca2+ imaging and case12 based live cell confocal fluorescence Ca2+ imaging. Luminescence imaging using the FAS system provides a simple, robust and sensitive detection of spatial and temporal Ca2+ signals at the tissue level, while live cell confocal imaging using Case12 provides simultaneous detection of cytosolic and nuclear Ca2+ signals at a high resolution.
Plant Biology, Issue 91, Aequorin, Case12, abiotic stress, heavy metal stress, copper ion, calcium imaging, Arabidopsis
Play Button
A Molecular Readout of Long-term Olfactory Adaptation in C. elegans
Authors: Chao He, Jin I. Lee, Noelle L'Etoile, Damien O'Halloran.
Institutions: George Washington University, Fred Hutchinson Cancer Research Center, University of California San Francisco .
During sustained stimulation most sensory neurons will adapt their response by decreasing their sensitivity to the signal. The adaptation response helps shape attention and also protects cells from over-stimulation. Adaptation within the olfactory circuit of C. elegans was first described by Colbert and Bargmann1,2. Here, the authors defined parameters of the olfactory adaptation paradigm, which they used to design a genetic screen to isolate mutants defective in their ability to adapt to volatile odors sensed by the Amphid Wing cells type C (AWC) sensory neurons. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor3 for 30 min they will adapt their responsiveness to the odor and will then ignore the adapting odor in a chemotaxis behavioral assay for ~1 hr. When wildtype C. elegans animals are exposed to an attractive AWC-sensed odor for ~1 hr they will then ignore the adapting odor in a chemotaxis behavioral assay for ~3 hr. These two phases of olfactory adaptation in C. elegans were described as short-term olfactory adaptation (induced after 30 min odor exposure), and long-term olfactory adaptation (induced after 60 min odor exposure). Later work from L'Etoile et al.,4 uncovered a Protein Kinase G (PKG) called EGL-4 that is required for both the short-term and long-term olfactory adaptation in AWC neurons. The EGL-4 protein contains a nuclear localization sequence that is necessary for long-term olfactory adaptation responses but dispensable for short-term olfactory adaptation responses in the AWC4. By tagging EGL-4 with a green fluorescent protein, it was possible to visualize the localization of EGL-4 in the AWC during prolonged odor exposure. Using this fully functional GFP-tagged EGL-4 (GFP::EGL-4) molecule we have been able to develop a molecular readout of long-term olfactory adaptation in the AWC5. Using this molecular readout of olfactory adaptation we have been able to perform both forward and reverse genetic screens to identify mutant animals that exhibit defective subcellular localization patterns of GFP::EGL-4 in the AWC6,7. Here we describe: 1) the construction of GFP::EGL-4 expressing animals; 2) the protocol for cultivation of animals for long-term odor-induced nuclear translocation assays; and 3) the scoring of the long-term odor-induced nuclear translocation event and recovery (re-sensitization) from the nuclear GFP::EGL-4 state.
Developmental Biology, Issue 70, Neuroscience, Molecular Biology, Cellular Biology, Olfactory adaptation, C. elegans, EGL-4, nuclear translocation, olfaction, animal model
Play Button
Viability Assays for Cells in Culture
Authors: Jessica M. Posimo, Ajay S. Unnithan, Amanda M. Gleixner, Hailey J. Choi, Yiran Jiang, Sree H. Pulugulla, Rehana K. Leak.
Institutions: Duquesne University.
Manual cell counts on a microscope are a sensitive means of assessing cellular viability but are time-consuming and therefore expensive. Computerized viability assays are expensive in terms of equipment but can be faster and more objective than manual cell counts. The present report describes the use of three such viability assays. Two of these assays are infrared and one is luminescent. Both infrared assays rely on a 16 bit Odyssey Imager. One infrared assay uses the DRAQ5 stain for nuclei combined with the Sapphire stain for cytosol and is visualized in the 700 nm channel. The other infrared assay, an In-Cell Western, uses antibodies against cytoskeletal proteins (α-tubulin or microtubule associated protein 2) and labels them in the 800 nm channel. The third viability assay is a commonly used luminescent assay for ATP, but we use a quarter of the recommended volume to save on cost. These measurements are all linear and correlate with the number of cells plated, but vary in sensitivity. All three assays circumvent time-consuming microscopy and sample the entire well, thereby reducing sampling error. Finally, all of the assays can easily be completed within one day of the end of the experiment, allowing greater numbers of experiments to be performed within short timeframes. However, they all rely on the assumption that cell numbers remain in proportion to signal strength after treatments, an assumption that is sometimes not met, especially for cellular ATP. Furthermore, if cells increase or decrease in size after treatment, this might affect signal strength without affecting cell number. We conclude that all viability assays, including manual counts, suffer from a number of caveats, but that computerized viability assays are well worth the initial investment. Using all three assays together yields a comprehensive view of cellular structure and function.
Cellular Biology, Issue 83, In-cell Western, DRAQ5, Sapphire, Cell Titer Glo, ATP, primary cortical neurons, toxicity, protection, N-acetyl cysteine, hormesis
Play Button
Bioenergetics and the Oxidative Burst: Protocols for the Isolation and Evaluation of Human Leukocytes and Platelets
Authors: Philip A. Kramer, Balu K. Chacko, Saranya Ravi, Michelle S. Johnson, Tanecia Mitchell, Victor M. Darley-Usmar.
Institutions: University of Alabama at Birmingham.
Mitochondrial dysfunction is known to play a significant role in a number of pathological conditions such as atherosclerosis, diabetes, septic shock, and neurodegenerative diseases but assessing changes in bioenergetic function in patients is challenging. Although diseases such as diabetes or atherosclerosis present clinically with specific organ impairment, the systemic components of the pathology, such as hyperglycemia or inflammation, can alter bioenergetic function in circulating leukocytes or platelets. This concept has been recognized for some time but its widespread application has been constrained by the large number of primary cells needed for bioenergetic analysis. This technical limitation has been overcome by combining the specificity of the magnetic bead isolation techniques, cell adhesion techniques, which allow cells to be attached without activation to microplates, and the sensitivity of new technologies designed for high throughput microplate respirometry. An example of this equipment is the extracellular flux analyzer. Such instrumentation typically uses oxygen and pH sensitive probes to measure rates of change in these parameters in adherent cells, which can then be related to metabolism. Here we detail the methods for the isolation and plating of monocytes, lymphocytes, neutrophils and platelets, without activation, from human blood and the analysis of mitochondrial bioenergetic function in these cells. In addition, we demonstrate how the oxidative burst in monocytes and neutrophils can also be measured in the same samples. Since these methods use only 8-20 ml human blood they have potential for monitoring reactive oxygen species generation and bioenergetics in a clinical setting.
Immunology, Issue 85, bioenergetics, translational, mitochondria, oxidative stress, reserve capacity, leukocytes
Play Button
Isolation of CA1 Nuclear Enriched Fractions from Hippocampal Slices to Study Activity-dependent Nuclear Import of Synapto-nuclear Messenger Proteins
Authors: Pingan Yuanxiang, Sujoy Bera, Anna Karpova, Michael R. Kreutz, Marina Mikhaylova.
Institutions: Leibniz Institute for Neurobiology, Utrecht University.
Studying activity dependent protein expression, subcellular translocation, or phosphorylation is essential to understand the underlying cellular mechanisms of synaptic plasticity. Long-term potentiation (LTP) and long-term depression (LTD) induced in acute hippocampal slices are widely accepted as cellular models of learning and memory. There are numerous studies that use live cell imaging or immunohistochemistry approaches to visualize activity dependent protein dynamics. However these methods rely on the suitability of antibodies for immunocytochemistry or overexpression of fluorescence-tagged proteins in single neurons. Immunoblotting of proteins is an alternative method providing independent confirmation of the findings. The first limiting factor in preparation of subcellular fractions from individual tetanized hippocampal slices is the low amount of material. Second, the handling procedure is crucial because even very short and minor manipulations of living slices might induce activation of certain signaling cascades. Here we describe an optimized workflow in order to obtain sufficient quantity of nuclear enriched fraction of sufficient purity from the CA1 region of acute hippocampal slices from rat brain. As a representative example we show that the ERK1/2 phosphorylated form of the synapto-nuclear protein messenger Jacob actively translocates to the nucleus upon induction of LTP and can be detected in a nuclear enriched fraction from CA1 neurons.
Neuroscience, Issue 90, Hippocampal slices, long-term potentiation LTP, nucleus, NMDA receptors, NLS, immunoblotting, Jacob, nuclear enriched protein preparations
Play Button
Novel Whole-tissue Quantitative Assay of Nitric Oxide Levels in Drosophila Neuroinflammatory Response
Authors: Rami R. Ajjuri, Janis M. O'Donnell.
Institutions: University of Alabama.
Neuroinflammation is a complex innate immune response vital to the healthy function of the central nervous system (CNS). Under normal conditions, an intricate network of inducers, detectors, and activators rapidly responds to neuron damage, infection or other immune infractions. This inflammation of immune cells is intimately associated with the pathology of neurodegenerative disorders, such as Parkinson's disease (PD), Alzheimer's disease and ALS. Under compromised disease states, chronic inflammation, intended to minimize neuron damage, may lead to an over-excitation of the immune cells, ultimately resulting in the exacerbation of disease progression. For example, loss of dopaminergic neurons in the midbrain, a hallmark of PD, is accelerated by the excessive activation of the inflammatory response. Though the cause of PD is largely unknown, exposure to environmental toxins has been implicated in the onset of sporadic cases. The herbicide paraquat, for example, has been shown to induce Parkinsonian-like pathology in several animal models, including Drosophila melanogaster. Here, we have used the conserved innate immune response in Drosophila to develop an assay capable of detecting varying levels of nitric oxide, a cell-signaling molecule critical to the activation of the inflammatory response cascade and targeted neuron death. Using paraquat-induced neuronal damage, we assess the impact of these immune insults on neuroinflammatory stimulation through the use of a novel, quantitative assay. Whole brains are fully extracted from flies either exposed to neurotoxins or of genotypes that elevate susceptibility to neurodegeneration then incubated in cell-culture media. Then, using the principles of the Griess reagent reaction, we are able to detect minor changes in the secretion of nitric oxide into cell-culture media, essentially creating a primary live-tissue model in a simple procedure. The utility of this model is amplified by the robust genetic and molecular complexity of Drosophila melanogaster, and this assay can be modified to be applicable to other Drosophila tissues or even other small, whole-organism inflammation models.
Immunology, Issue 82, biology (general), environmental effects (biological, animal and plant), immunology, animal models, Immune System Diseases, Pathological Conditions, Signs and Symptoms, Life Sciences (General), Neuroinflammation, inflammation, nitric oxide, nitric oxide synthase, Drosophila, neurodegeneration, brain, Griess assay, nitrite detection, innate immunity, Parkinson disease, tissue culture
Play Button
Purification of Transcripts and Metabolites from Drosophila Heads
Authors: Kurt Jensen, Jonatan Sanchez-Garcia, Caroline Williams, Swati Khare, Krishanu Mathur, Rita M. Graze, Daniel A. Hahn, Lauren M. McIntyre, Diego E. Rincon-Limas, Pedro Fernandez-Funez.
Institutions: University of Florida , University of Florida , University of Florida , University of Florida .
For the last decade, we have tried to understand the molecular and cellular mechanisms of neuronal degeneration using Drosophila as a model organism. Although fruit flies provide obvious experimental advantages, research on neurodegenerative diseases has mostly relied on traditional techniques, including genetic interaction, histology, immunofluorescence, and protein biochemistry. These techniques are effective for mechanistic, hypothesis-driven studies, which lead to a detailed understanding of the role of single genes in well-defined biological problems. However, neurodegenerative diseases are highly complex and affect multiple cellular organelles and processes over time. The advent of new technologies and the omics age provides a unique opportunity to understand the global cellular perturbations underlying complex diseases. Flexible model organisms such as Drosophila are ideal for adapting these new technologies because of their strong annotation and high tractability. One challenge with these small animals, though, is the purification of enough informational molecules (DNA, mRNA, protein, metabolites) from highly relevant tissues such as fly brains. Other challenges consist of collecting large numbers of flies for experimental replicates (critical for statistical robustness) and developing consistent procedures for the purification of high-quality biological material. Here, we describe the procedures for collecting thousands of fly heads and the extraction of transcripts and metabolites to understand how global changes in gene expression and metabolism contribute to neurodegenerative diseases. These procedures are easily scalable and can be applied to the study of proteomic and epigenomic contributions to disease.
Genetics, Issue 73, Biochemistry, Molecular Biology, Neurobiology, Neuroscience, Bioengineering, Cellular Biology, Anatomy, Neurodegenerative Diseases, Biological Assay, Drosophila, fruit fly, head separation, purification, mRNA, RNA, cDNA, DNA, transcripts, metabolites, replicates, SCA3, neurodegeneration, NMR, gene expression, animal model
Play Button
Ratiometric Biosensors that Measure Mitochondrial Redox State and ATP in Living Yeast Cells
Authors: Jason D. Vevea, Dana M. Alessi Wolken, Theresa C. Swayne, Adam B. White, Liza A. Pon.
Institutions: Columbia University, Columbia University.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.
Bioengineering, Issue 77, Microbiology, Cellular Biology, Molecular Biology, Biochemistry, life sciences, roGFP, redox-sensitive green fluorescent protein, GO-ATeam, ATP, FRET, ROS, mitochondria, biosensors, GFP, ImageJ, microscopy, confocal microscopy, cell, imaging
Play Button
Selecting and Isolating Colonies of Human Induced Pluripotent Stem Cells Reprogrammed from Adult Fibroblasts
Authors: Urszula Polak, Calley Hirsch, Sherman Ku, Joel Gottesfeld, Sharon Y.R. Dent, Marek Napierala.
Institutions: University of Texas M.D. Anderson Cancer Center, Poznan University of Medical Sciences, The Scripps Research Institute.
Herein we present a protocol of reprogramming human adult fibroblasts into human induced pluripotent stem cells (hiPSC) using retroviral vectors encoding Oct3/4, Sox2, Klf4 and c-myc (OSKM) in the presence of sodium butyrate 1-3. We used this method to reprogram late passage (>p10) human adult fibroblasts derived from Friedreich's ataxia patient (GM03665, Coriell Repository). The reprogramming approach includes highly efficient transduction protocol using repetitive centrifugation of fibroblasts in the presence of virus-containing media. The reprogrammed hiPSC colonies were identified using live immunostaining for Tra-1-81, a surface marker of pluripotent cells, separated from non-reprogrammed fibroblasts and manually passaged 4,5. These hiPSC were then transferred to Matrigel plates and grown in feeder-free conditions, directly from the reprogramming plate. Starting from the first passage, hiPSC colonies demonstrate characteristic hES-like morphology. Using this protocol more than 70% of selected colonies can be successfully expanded and established into cell lines. The established hiPSC lines displayed characteristic pluripotency markers including surface markers TRA-1-60 and SSEA-4, as well as nuclear markers Oct3/4, Sox2 and Nanog. The protocol presented here has been established and tested using adult fibroblasts obtained from Friedreich's ataxia patients and control individuals 6, human newborn fibroblasts, as well as human keratinocytes.
Developmental Biology, Issue 60, stem cells, induced pluripotent stem cells, iPSC, somatic cell reprogramming, pluripotency, retroviral transduction
Play Button
Enhancement of Apoptotic and Autophagic Induction by a Novel Synthetic C-1 Analogue of 7-deoxypancratistatin in Human Breast Adenocarcinoma and Neuroblastoma Cells with Tamoxifen
Authors: Dennis Ma, Jonathan Collins, Tomas Hudlicky, Siyaram Pandey.
Institutions: University of Windsor, Brock University.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.
Cancer Biology, Issue 63, Medicine, Biochemistry, Breast adenocarcinoma, neuroblastoma, tamoxifen, combination therapy, apoptosis, autophagy
Play Button
Methods to Assess Subcellular Compartments of Muscle in C. elegans
Authors: Christopher J. Gaffney, Joseph J. Bass, Thomas F. Barratt, Nathaniel J. Szewczyk.
Institutions: University of Nottingham.
Muscle is a dynamic tissue that responds to changes in nutrition, exercise, and disease state. The loss of muscle mass and function with disease and age are significant public health burdens. We currently understand little about the genetic regulation of muscle health with disease or age. The nematode C. elegans is an established model for understanding the genomic regulation of biological processes of interest. This worm’s body wall muscles display a large degree of homology with the muscles of higher metazoan species. Since C. elegans is a transparent organism, the localization of GFP to mitochondria and sarcomeres allows visualization of these structures in vivo. Similarly, feeding animals cationic dyes, which accumulate based on the existence of a mitochondrial membrane potential, allows the assessment of mitochondrial function in vivo. These methods, as well as assessment of muscle protein homeostasis, are combined with assessment of whole animal muscle function, in the form of movement assays, to allow correlation of sub-cellular defects with functional measures of muscle performance. Thus, C. elegans provides a powerful platform with which to assess the impact of mutations, gene knockdown, and/or chemical compounds upon muscle structure and function. Lastly, as GFP, cationic dyes, and movement assays are assessed non-invasively, prospective studies of muscle structure and function can be conducted across the whole life course and this at present cannot be easily investigated in vivo in any other organism.
Developmental Biology, Issue 93, Physiology, C. elegans, muscle, mitochondria, sarcomeres, ageing
Play Button
Mechanical Stimulation-induced Calcium Wave Propagation in Cell Monolayers: The Example of Bovine Corneal Endothelial Cells
Authors: Catheleyne D'hondt, Bernard Himpens, Geert Bultynck.
Institutions: KU Leuven.
Intercellular communication is essential for the coordination of physiological processes between cells in a variety of organs and tissues, including the brain, liver, retina, cochlea and vasculature. In experimental settings, intercellular Ca2+-waves can be elicited by applying a mechanical stimulus to a single cell. This leads to the release of the intracellular signaling molecules IP3 and Ca2+ that initiate the propagation of the Ca2+-wave concentrically from the mechanically stimulated cell to the neighboring cells. The main molecular pathways that control intercellular Ca2+-wave propagation are provided by gap junction channels through the direct transfer of IP3 and by hemichannels through the release of ATP. Identification and characterization of the properties and regulation of different connexin and pannexin isoforms as gap junction channels and hemichannels are allowed by the quantification of the spread of the intercellular Ca2+-wave, siRNA, and the use of inhibitors of gap junction channels and hemichannels. Here, we describe a method to measure intercellular Ca2+-wave in monolayers of primary corneal endothelial cells loaded with Fluo4-AM in response to a controlled and localized mechanical stimulus provoked by an acute, short-lasting deformation of the cell as a result of touching the cell membrane with a micromanipulator-controlled glass micropipette with a tip diameter of less than 1 μm. We also describe the isolation of primary bovine corneal endothelial cells and its use as model system to assess Cx43-hemichannel activity as the driven force for intercellular Ca2+-waves through the release of ATP. Finally, we discuss the use, advantages, limitations and alternatives of this method in the context of gap junction channel and hemichannel research.
Cellular Biology, Issue 77, Molecular Biology, Medicine, Biomedical Engineering, Biophysics, Immunology, Ophthalmology, Gap Junctions, Connexins, Connexin 43, Calcium Signaling, Ca2+, Cell Communication, Paracrine Communication, Intercellular communication, calcium wave propagation, gap junctions, hemichannels, endothelial cells, cell signaling, cell, isolation, cell culture
Play Button
Primary Culture of Mouse Dopaminergic Neurons
Authors: Florence Gaven, Philippe Marin, Sylvie Claeysen.
Institutions: Institut de Génomique Fonctionnelle, Montpellier, U661, Montpellier, Universités de Montpellier.
Dopaminergic neurons represent less than 1% of the total number of neurons in the brain. This low amount of neurons regulates important brain functions such as motor control, motivation, and working memory. Nigrostriatal dopaminergic neurons selectively degenerate in Parkinson's disease (PD). This progressive neuronal loss is unequivocally associated with the motors symptoms of the pathology (bradykinesia, resting tremor, and muscular rigidity). The main agent responsible of dopaminergic neuron degeneration is still unknown. However, these neurons appear to be extremely vulnerable in diverse conditions. Primary cultures constitute one of the most relevant models to investigate properties and characteristics of dopaminergic neurons. These cultures can be submitted to various stress agents that mimic PD pathology and to neuroprotective compounds in order to stop or slow down neuronal degeneration. The numerous transgenic mouse models of PD that have been generated during the last decade further increased the interest of researchers for dopaminergic neuron cultures. Here, the video protocol focuses on the delicate dissection of embryonic mouse brains. Precise excision of ventral mesencephalon is crucial to obtain neuronal cultures sufficiently rich in dopaminergic cells to allow subsequent studies. This protocol can be realized with embryonic transgenic mice and is suitable for immunofluorescence staining, quantitative PCR, second messenger quantification, or neuronal death/survival assessment.
Neurobiology, Issue 91, Mus musculus, mesencephalon, embryonic, tyrosine hydroxylase, dopamine transporter, Parkinson's disease in vitro model
Play Button
Analysis of Oxidative Stress in Zebrafish Embryos
Authors: Vera Mugoni, Annalisa Camporeale, Massimo M. Santoro.
Institutions: University of Torino, Vesalius Research Center, VIB.
High levels of reactive oxygen species (ROS) may cause a change of cellular redox state towards oxidative stress condition. This situation causes oxidation of molecules (lipid, DNA, protein) and leads to cell death. Oxidative stress also impacts the progression of several pathological conditions such as diabetes, retinopathies, neurodegeneration, and cancer. Thus, it is important to define tools to investigate oxidative stress conditions not only at the level of single cells but also in the context of whole organisms. Here, we consider the zebrafish embryo as a useful in vivo system to perform such studies and present a protocol to measure in vivo oxidative stress. Taking advantage of fluorescent ROS probes and zebrafish transgenic fluorescent lines, we develop two different methods to measure oxidative stress in vivo: i) a “whole embryo ROS-detection method” for qualitative measurement of oxidative stress and ii) a “single-cell ROS detection method” for quantitative measurements of oxidative stress. Herein, we demonstrate the efficacy of these procedures by increasing oxidative stress in tissues by oxidant agents and physiological or genetic methods. This protocol is amenable for forward genetic screens and it will help address cause-effect relationships of ROS in animal models of oxidative stress-related pathologies such as neurological disorders and cancer.
Developmental Biology, Issue 89, Danio rerio, zebrafish embryos, endothelial cells, redox state analysis, oxidative stress detection, in vivo ROS measurements, FACS (fluorescence activated cell sorter), molecular probes
Play Button
A Rapid and Specific Microplate Assay for the Determination of Intra- and Extracellular Ascorbate in Cultured Cells
Authors: Darius J. R. Lane, Alfons Lawen.
Institutions: University of Sydney, Monash University.
Vitamin C (ascorbate) plays numerous important roles in cellular metabolism, many of which have only come to light in recent years. For instance, within the brain, ascorbate acts in a neuroprotective and neuromodulatory manner that involves ascorbate cycling between neurons and vicinal astrocytes - a relationship that appears to be crucial for brain ascorbate homeostasis. Additionally, emerging evidence strongly suggests that ascorbate has a greatly expanded role in regulating cellular and systemic iron metabolism than is classically recognized. The increasing recognition of the integral role of ascorbate in normal and deregulated cellular and organismal physiology demands a range of medium-throughput and high-sensitivity analytic techniques that can be executed without the need for highly expensive specialist equipment. Here we provide explicit instructions for a medium-throughput, specific and relatively inexpensive microplate assay for the determination of both intra- and extracellular ascorbate in cell culture.
Biochemistry, Issue 86, Vitamin C, Ascorbate, Cell swelling, Glutamate, Microplate assay, Astrocytes
Play Button
A Simple Composite Phenotype Scoring System for Evaluating Mouse Models of Cerebellar Ataxia
Authors: Stephan J. Guyenet, Stephanie A. Furrer, Vincent M. Damian, Travis D. Baughan, Albert R. La Spada, Gwenn A. Garden.
Institutions: University of Washington, University of Washington, University of California, San Diego - Rady Children’s Hospital.
We describe a protocol for the rapid and sensitive quantification of disease severity in mouse models of cerebella ataxia. It is derived from previously published phenotype assessments in several disease models, including spinocerebellar ataxias, Huntington s disease and spinobulbar muscular atrophy. Measures include hind limb clasping, ledge test, gait and kyphosis. Each measure is recorded on a scale of 0-3, with a combined total of 0-12 for all four measures. The results effectively discriminate between affected and non-affected individuals, while also quantifying the temporal progression of neurodegenerative disease phenotypes. Measures may be analyzed individually or combined into a composite phenotype score for greater statistical power. The ideal combination of the four described measures will depend upon the disorder in question. We present an example of the protocol used to assess disease severity in a transgenic mouse model of spinocerebellar ataxia type 7 (SCA7). Albert R. La Spada and Gwenn A. Garden contributed to this manuscript equally.
JoVE Neuroscience, Issue 39, Neurodegeneration, Mouse behavior assay, cerebellar ataxia, polyglutamine disease
Play Button
Purification of Mitochondria from Yeast Cells
Authors: Christopher Gregg, Pavlo Kyryakov, Vladimir I. Titorenko.
Institutions: Concordia University.
Mitochondria are the main site of ATP production during aerobic metabolism in eukaryotic non-photosynthetic cells1. These complex organelles also play essential roles in apoptotic cell death2, cell survival3, mammalian development4, neuronal development and function4, intracellular signalling5, and longevity regulation6. Our understanding of these complex biological processes controlled by mitochondria relies on robust methods for assessing their morphology, their protein and lipid composition, the integrity of their DNA, and their numerous vital functions. The budding yeast Saccharomyces cerevisiae, a genetically and biochemically manipulable unicellular eukaryote with annotated genome and well-defined proteome, is a valuable model for studying the molecular and cellular mechanisms underlying essential biological functions of mitochondria. For these types of studies, it is crucial to have highly pure mitochondria. Here we present a detailed description of a rapid and effective method for purification of yeast mitochondria. This method enables the isolation of highly pure mitochondria that are essentially free of contamination by other organelles and retain their structural and functional integrity after their purification. Mitochondria purified by this method are suitable for cell-free reconstitution of essential mitochondrial processes and can be used for the analysis of mitochondrial structure and functions, mitochondrial proteome and lipidome, and mitochondrial DNA.
Cellular Biology, Issue 30, subcellular fractionation, organelles, organelle purification, mitochondria
Play Button
Probing for Mitochondrial Complex Activity in Human Embryonic Stem Cells
Authors: Ivan Khvorostov, Jin Zhang, Michael Teitell.
Institutions: University of California, Los Angeles.
Mitochondria are cytoplasmic organelles that have a primary role in cellular metabolism and homeostasis, regulation of the cell signaling network, and programmed cell death. Mitochondria produce ATP, regulate the cytoplasmic redox state and Ca2+ balance, catabolize fatty acids, synthesize heme, nucleotides, steroid hormones, amino acids, and help assemble iron-sulfur clusters in proteins. Mitochondria also have an essential role in heat production. Mutations of the mitochondrial genome cause several types of human disorder. The accumulation of mtDNA mutations correlates with aging and is suspected to have an important role in the development of cancer. Due to their vitally important role in all cell types, the function of mitochondria must also be critical for stem cells. Key advances have been made in our understanding of stem cell viability, proliferation, and differentiation capacity. But the functional activity of stem cells, in particular their energy status, was not yet been studied in detail. Almost nothing is known about the mitochondrial properties of human embryonic stem cells (hESCs) and their differentiated precursor progeny. One way to understand and evaluate the role of mitochondria in hESC function and developmental potential is to directly measure the activity of mitochondrial respiratory complexes. Here, we describe high resolution clear native gel electrophoresis and subsequent in gel activity visualization as a method for analyzing the five respiratory chain complexes of hESCs.
Cell Biology, Issue 16, human embryonic stem cells, mitochondria, oxidative phosphorylation, respiration, electron transport chain, native gel electrophoresis
Play Button
Ole Isacson: Development of New Therapies for Parkinson's Disease
Authors: Ole Isacson.
Institutions: Harvard Medical School.
Medicine, Issue 3, Parkinson' disease, Neuroscience, dopamine, neuron, L-DOPA, stem cell, transplantation
Play Button
Interview: Protein Folding and Studies of Neurodegenerative Diseases
Authors: Susan Lindquist.
Institutions: MIT - Massachusetts Institute of Technology.
In this interview, Dr. Lindquist describes relationships between protein folding, prion diseases and neurodegenerative disorders. The problem of the protein folding is at the core of the modern biology. In addition to their traditional biochemical functions, proteins can mediate transfer of biological information and therefore can be considered a genetic material. This recently discovered function of proteins has important implications for studies of human disorders. Dr. Lindquist also describes current experimental approaches to investigate the mechanism of neurodegenerative diseases based on genetic studies in model organisms.
Neuroscience, issue 17, protein folding, brain, neuron, prion, neurodegenerative disease, yeast, screen, Translational Research
Copyright © JoVE 2006-2015. All Rights Reserved.
Policies | License Agreement | ISSN 1940-087X
simple hit counter

What is Visualize?

JoVE Visualize is a tool created to match the last 5 years of PubMed publications to methods in JoVE's video library.

How does it work?

We use abstracts found on PubMed and match them to JoVE videos to create a list of 10 to 30 related methods videos.

Video X seems to be unrelated to Abstract Y...

In developing our video relationships, we compare around 5 million PubMed articles to our library of over 4,500 methods videos. In some cases the language used in the PubMed abstracts makes matching that content to a JoVE video difficult. In other cases, there happens not to be any content in our video library that is relevant to the topic of a given abstract. In these cases, our algorithms are trying their best to display videos with relevant content, which can sometimes result in matched videos with only a slight relation.